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Abstract

The present work is a part of an extended analytical investigation of the dynamical
equation, determining the spatial structure of the stationary elliptical accretion discs,
according to the model of Lyubarskij et al. [1]. In the mathematical description of the
problem are used as parameters the eccentricity e(u) of the particle orbits, and its
derivative é(u) = de(u)/du ,where u =In(p), and p is the focal parameter of the considered
orbit. During the process of simplification of that equation, there arises

2
the necessity of analytical evaluations of integrals of the following types: Ai(e, é) = J(a +
+ecosp) ~'dg, 0

(i=1,...5), (e, é) = i?l + ecosp) '[1 + (e — é)cosp] ¥ dgp and Hi(e, ¢) Ej(ll + ecosp) K x

x[1 + (e — é)cosp] ~'dp, (k = 1,...,4). In these formulas ¢ is the azimuthal angle, over
which the averaging is taken. The approach in solving of the task is, in fact, recursive. At
first, we evaluate the integrals with the smallest i and k (i.e., i and k equal to unity). After
then, we go to the next steps, gradually increasing the integer powers i or k, until achieving
the designated values 5 or 4, correspondingly. A special attention is devoted to these values
of e(u) and é(u) (and their difference e(u) - é(u) ), which, eventually, may cause
divergences in the intermediate or the final expressions. It is shown that although such
troubles arise, they can be overcome by means of a direct substitution of the “peculiar”
values of e(u) and/or é(u) into the integrals, and after then performing the calculations.
Even if the denominators in the final results appear factors equal to zero (due to the
nullifications of e(u), é(u) or e(u) — é(u) ), the expressions are not divergent , as we have
proved, using the L’Hospital’s rule for resolving of indeterminacies of the type 0/0. All the
analytical estimations of the above written integrals are performed under the restrictions



le(u)] < 1, [é(u)] <1 and |e(u) — é(u)| < 1. They are imposed by the physical reasons, in view
of the application of these solutions into the adopted theory of the elliptical accretion discs.

1. Introduction

We have considered some simplifications of the dynamical equation,
governing the structure of the elliptical accretion discs in the model of
Lyubarskij et al. [1]. The results are already published in a series of papers
([2], [3] and [4]; see also the references therein). In the course of this work,
we have introduced seven integrals, which are functions of the eccentricities
e(u) of the particle orbits in the accretion disc, their derivatives
é(u) = de(u)/du and the power n into the viscosity law # = # X". Further we
explain the use of the introduced notations. Here u is defined to be the
logarithm of the focal parameter p of the corresponding ellipse, representing
the considered particle orbit: u = In(p). We remind that in the considered
model of Lyubarskij et al. [1], all elliptical trajectories in the accretion flow
are such, that the major axes of the ellipses lie on the same line (assumed to
be the abscissa on which lie the periastrons and apoastrons of the all
trajectories). This simplification (introduced “by hands”) allows to derive a
dynamical equation for the particles of the disc, which is a second order
ordinary differential equation [1]. Such a situation is more favorable, if we
try to apply an analytical approach for solving of this problem. The picture
of the dynamics of the elliptical accretion discs becomes much more
complicated in the opposite (more general) case, when the ellipses of the
orbits have apse lines, which are not necessarily in line with each other.
Then the dynamics of the disc is described by partial differential equations,
as it has been shown in the investigation of Ogilvie [5]. Our working out of
the model of Lyubarskij et al. [1] is stimulated in the first place namely by
the above mentioned simplifying circumstance, allowing more favorable
possibilities to solve the problem by purely analytical methods. Though the
considered case may have less usefulness with respect to the really observed
discs. That is to say, elliptical discs with orbits sharing a common longitude
of the periastron are rare situations among the objects of the kind eccentric
accretion discs. It is worth to note that while the orbital eccentricity e(u) and
its derivative ¢é(u) = de(u)/du are functions of the focal parameter
p (u=In(p)), the power n does not depend on u. This means that n is a fixed
constant through the whole disc, while the elongation of the particle orbits
may vary for the different parts of the disc. In particular, for the outer parts



the periastron of the elliptical orbits may have positive (negative) values of
the abscissa, but at the same time in the inner parts of the accretion disc,
such values may take negative (positive) meanings, respectively. As it has
been written above, the accepted in [1] viscosity law is # = # X" (where f is
a constant). The viscosity parameter » will depend on the spatial coordinates
r and ¢ (where r is the length of the radius-vector, measured from the center
of the compact object, accreting the matter; ¢ is the azimuthal angle) only
through the surface density of the disc 2 = 2(r, ¢).

During the process of simplification of the dynamical equation of the
elliptical accretion discs (derived by Lyubarskij et al. [1], we have
introduced seven auxiliary integrals, which appear because of the azimuthal-
angle averaging of the task. These integrals are functions of e(u), ¢(u) and n,
and are defined in the following manner ([2], [3] and [4]):

2n
(1) lo.(e,é,n) = (1 + ecosp) "~3[1 + (e — é)cosp] "V dp
0
2n
(2) lo:(e,é,n) = (I)(l +ecosp)""’[1 + (e - é)cosp] "2 dy,
2n i
(3) li(e,e,n) = [(cosp)'(1 + ecosp) "~[1 + (e — é)cosp] " Vdp; j=0,1,2,3, 4.
0

We remind here, that we consider a particular case of the elliptical
accretion discs, developed by Lyubarskij et al. [1]: namely, stationary flows.
Moreover, there are some additional limitations, imposed for every elliptical
orbit in the disc, on the eccentricity e(u) and its derivative é(u) = de(u)/du.
These are the inequalities: |e(u)| < 1, |é(u)| < 1 and |e(u) — é(u)| < 1, valid for
every value u = In(p) in the disc. Mathematically viewed, these conditions
ensure that the integrals (1) — (3) are well behaving, because the
denominators are always strongly positive and, correspondingly, do not
cause singularities. From a physical point of view, possible nullifications of
the denominators in the definitions (1) — (3) might be connected with the
emerging of shock waves in the disc, leading, in own turn, to spiral density
waves [1]. Such phenomena a priori are not considered by this model. The
discussed circumstance is clearly reflected in the expressions for the
denominators of the metric tensor and the related quantities (see the
Appendices in paper [1]).

In the above cited earlier investigations [2], [3] and [4], we have
interested in the establishing of the linear relations between the integrals (1)
— (3), in order to eliminate them from the dynamical equation of the



accretion flow. This is in a correspondence with our approach to simplify
analytically the equation and, eventually, to reveal its mathematical
structure and physical implications by purely analytical manners. And only
after that to apply, if it is unavoidable, the numerical computations. Leaving
aside the integral I3(e,é,n), we have shown that four of the other integrals
(1) = (3) may be expressed through linear combinations of the integrals
lo-(e,é,n) and lo+(e,é,n). So that, to proceed further, we need to investigate
whether the last two integrals are linearly independent functions with
respect to the variables e(u) and ¢(u), or not. We remark here that the power
n in the viscosity law = g 2" is a fixed quantity throughout the entire
elliptical accretion disc. When we state that n is a parameter, entering as an
independent variable in the list of arguments of the integrals (1) — (3), etc.,
we subtend that we, in fact, consider a family of an infinite number of discs.
Every with own fixed value of the power n. Saying that n varies, we bear in
mind that such a variation of n is not over the spatial coordinates in the disc,
but from one model to other model (with different n); i.e., n does not depend
on u = In(p). This situation, of course, simplifies the differentiation with
respect to e(u) or é(u) of variety kinds of expressions, like (1 + ecosp)",
[1 + (e — é)cosp]", etc. But there are some cases, when we need of the
derivatives with respect to n. Then, according to the well known
differentiating rule from the analysis d(a*)/dx = a" In(a) (where a does not
depend on x), as we shall see later, in the integrands of the
considered integrals will appear factors of the type In(1+ ecosp) and

In[1 + (e — é)cosp]. This complicates the analytical computation of the
integrals, because we did not successfully find any expressions about them
in the accessible for us mathematical reference books, manuals, guides and
handbooks. The reason for differentiating with respect to the power n is the
following. During the process of  verification of linear
dependence/independence of the integrals lo.(e,e,n) and lo.(e,é,n), there
appear terms containing into their denominators factors like (n — 1), (n — 2),
etc., which implies suspicions of divergences, if we try to use the final
results for some integer values of n. Of course, we are able to perform the
evaluation of the considered expressions in a separate manner for these
“peculiar” integer values of n and obtain nonsingular results for this special
cases. Such a possibility is guaranteed by the form of the initial expressions
(namely, the integrals of the type (1) — (3) and the other integrals,
originating from them), which we try to evaluate analytically. They are
obviously not singular for these “problematic” integer values of n. But from



physical reasons, there is not motivation to assume the existence of such
“special” selection of some integer n, and we expect that the pointed out
property to be reflected into the mathematical formulas. More strictly
speaking, we suspect that the divergences, appearing because of the
nullification of the denominators for some integer n, may be overcome by
means of the L’Hospital’s rule for resolving of indeterminacies of the type
0/0. Such an additional checking of the results for the above mentioned
“problematic” integer values of the power n has two reasons: (i) the
transition through these integer values of n is continuos. That is to say, the
direct computation of the analytically evaluated integrals gives the same
results as in the case, when the limit transition to the “problematic” integer n
is used into the “singular” formulas. If the L"Hospital’s rule may be applied,
of course! There are two L’Hospital’s rules: one helps us to evaluate
indeterminacies of the type 0/0 and the other — for the type «/c. In the our
further exposition we shall use only the first theorem of L’Hospital. For this
reason, let us formulate (in order to make things clear) the first variant of
these rules. The proof of these statements can be found in many textbooks
on differential calculus, and we shall not cite them in our references.
Because the variables, which describe the accretion disc model, are real
numbers, the formulation of the first L’Hospital’s rule will be restricted to
this case. Let we have a point X, (in our application, this may be a concrete
value of e(u), é(u), e(u) — é(u) or n). Let be fulfilled the following
conditions: (i) functions f(x) and g(x) are defined and continuous in some
interval around X,; (ii) both these functions approach zero, when x
approaches X,:

lim f(x) = lim g(x) = 0; (iii) the derivatives f '(x) = df(x)/dx and g'(x) =

X=X X—X

= dg(x)/dx in that interval (except, may be, at the point x,) exist; (iv) these
derivatives do not simultaneously vanish for x # x,; (v) there also exists the
limit

lim [f'(x)/g'(X)].

X — Xo

Then, under these circumstances, the first L’Hospital’s rule states that

lim [f (xX)/g(x)] = lim [f '(x)/g'(x)]. In what follows, when arise the need

X — Xo X — Xo

of application of the L’Hospital’s rule, the points (i) — (v) must be checked
for their validity. If some of them are not obvious, we shall give a detailed
proof of the correctness of these conditions. It may occur, that the rule has to



be applied several times successively, in order to be achieved the reasonable
final result.

The establishing of the linear dependence/independence of the integrals
lo-(e,é,n) and lo+(e,é,n) follows the standard way — computing the Wronski
determinant and evaluation of the domains in the space of variables, where
it is equal (or not equal) to zero. In the course of this procedure, which we
intend to perform in a purely analytical manner, without using numerical
methods, we arrive to the problem of the analytical solving of two integrals.
Like the definitions (1) — (3), they are also functions of e(u), ¢(u) and the
power n:

2n
(4) lo-4+1(8,6,0) = g(l +ecosp) "~ “[1 + (e — é)cosp] """V dg ,

2n
©) lo-2.+3(e.6n) = {)(1 +ecosp) " ’[L + (e - ¢)cosp] """ dy .

The appearance of such expressions is a consequence of the
differentiation of ly.(e,é,n) and lo.(e,é,n), in order to write the Wronski
determinant. In turn, the computation of the integrals (4) and (5) requires a
preliminary analytical evaluation of some auxiliary integrals, also functions
of e(u), é(u) and n. We divide them into two groups, whether their
integrands include (or not include) as factors the logarithms
In(1 + ecose) and In[1 + (e — é)cosg].

2. Analytical computation of the auxiliary integrals, which do not
contain logarithmic functions
2n

2.1. Evaluation of integrals of the type A(e.é) =[[1 + (e — é)cosp] ' dp
0

In the present subsection we calculate integrals with integrands
which are negative integer powers of the expression [1 + (e — é€)cosgp]. As
already mentioned above, we investigate the model of elliptical accretion
discs of Lyubarskij et al. [1] under three restrictions, imposed a priori on the
eccentricity e = e(u), its derivative é(u) = de(u)/du and the difference
e(u) — é(u).They must be fulfilled for all parts of the accretion flow, i.e., for
all u = In(p). Particularly, | e(u) — é(u)] < 1, which ensure that
[1 + (e — é)cosp] never vanishes for all values of the azimuthal angle
¢ (0 < ¢ < 27). With this remark, we are able to evaluate, without any
complications, the integrals Ai(e,é), defined through the relation:

10



2n i
(6) Ai(e,é) Edf[l + (e - é)cosp] ' de, i-non-negative integer.

Actually, we shall need of analytical expressions for Ai(e,é), wheni= 1, 2,
3, 4 and 5. Note that these functions do not depend on the power n!
According to formulas 858.525 and 858.535 from the tables of Dwight [6],
we are able immediately to give the analytical expressions for A;(e,é) and
As(e,é), respectively:

(7 As(e,6) zzﬁl +(e—é)cosp] tdp =27 [1-(e-e)] Y2,

8) As(e.é) Ezﬁl + (e —é)cosp] 2dp =2z [1-(e—¢)] ¥2.

Further we observe that for a fixed value n = 3, the integral lo.(e,é,n=
= 3) coincides with the function A4(e,é) (see the definition (1) for 1o.(e,é,n)):
9) Aue,é) Ez{)fl + (e —¢é)cosp] *dp = lo.(e,é,n =3) =

=a[2+3( - [1-(e—-¢) "2.

The later equality in the above relation follows from formula (6h)
from paper [7], where we have already given the analytical solutions of the
integrals (1) — (3) for integer values of the powern (n=-1,0, 1, 2, 3). The
evaluation of the auxiliary integral As(e,é) requires some additional efforts:

10)  Aged) Ezgfl + (e - é)cosp]* do =zﬁ[1 + (e - &)cosg] — (€ — €)cosg}x
x[1 + (e — ¢)cosp] > dg :zﬁl + (e — é)cosp] "2 dp —
“(e- éigzosw[l +(e=d)cosg] *dp =27 [1— (e )] ¥2—

—(e- éiﬁ;ow[l + (e - é)cosp] 3 dp,

where we have used the mentioned above result (8). To evaluate further the
right-hand side of the equality (10), we integrate by parts:

(11)  Ased)=2x[l-(e-¢)] ¥2-(e- e‘)ZIEl + (e — é)cosp] 2 d(sing) =

11



=2n[L- (e~ Y17 + 3(e - (1 - coSP)[L + (e~ cosg] * dp =

= 2x[l—(e— )] ¥2+3(e - e’)gﬁl +(e—¢)cosp] " dg +

+ 3[{11 - (e - 'cos’p] - 11 + (e~ cosy]* dp = 2 [1 - e~ 7127+
+3(e P Aded) + 3[1 - (e - )cospllL + (e - )cos]  dp -

- 31[1 + (o= ¢)cosp] *dp = 27 [1— (e — )]+ 3(e — 6/Au(e.6) + 3As(e,6) —

2n
-3(e- é)(f)COS(p[l + (e — €)cosp] 3 dp — 3A4(e,6) .
Consequently, we have about the unknown function As(e,é) that:

(12) - 2Aq(e,é) = 2x[1— (e — &) %2+ 3[(e - €)*— 1]Au(e,é) —

2m
-3(e- e')gcos(p[l + (e —é)cosp] *dg .

We can again use the equality (10), but now to write it into a form more
appropriate for comparison with (12):

(13) —2As(e8)=—4r[l-(e—-¢)] ¥%+2(- é)?éow[l + (e - é)cosp] 3 dp .

Equating of the right-hand-sides of (12) and (13) enables us to
compute the unknown integral. Strictly speaking, this is the integral
I1(e,e,n = 2) (see the definition (3) for j=1and n = 2):

(14) 5(- é)igOS(p[l + (e —é)cosp] 2 dp =5(e - é)ly(e,e,n=2) =

=6 [1-(e-e)] ¥2-3[1-(e-¢)’]Aq(e,0) .

Dividing this result by ( - 5) and replacing it into the right side of the
relation (10), we obtain the expression for the unknown function As(e,é):

(15) A3(e,é) =2 [1 _ (e _ e)z] =32 _ (677,'/5)[1 _ (e _ e)z;l -3/2 +
+ (3z/B)[1-(e— e)z][z +3(e- e)z][l —(e- e-)Z] 2772 ’

12



where we have applied the already computed expression (9) for As(e,é).
Finally:

(16) As(e,é) Ez(j:[Il + (e — é)cosp] -3 dp = (4x/5)[1 - (e - é)z] -32
+ (3a/5)[2 + 3(e - &)[1 - (e - ¢)°]¥?= (x/5)[10 + 5(e — ¢)][1 - (e - ¢)"] V2=
=2+ (e-e)’J[1-(e-¢)1 2.

Of course, we are able to use the equation (14) for obtaining the
analytical solution of the integral I;(e,e,n = 2):

(A7) IL(een=2) zi{gow[l + (e — ¢)cosp] 3 dg = [5(e — ¢)] ~{6a[1l - (e —¢)?] ¥?-

~3a[l-(e-¢)’J[2+3(-e)[l-(e-¢)] "?*=-3n(e-¢)[1-(e-¢)] ¥

This is already derived expression (paper [7], formula (5b)). We
rewrite it only to underline the consistency of our computation with the
earlier evaluations. Let us now set about the analytical computation of the
integral As(e,é). We shall proceed in the following manner: we begin with a
transformation of the already evaluated integral A4(e,¢), which leads to an
integration by parts. The later operation will require differentiation with
respect to ¢ (¢ is the azimuthal angle, which in our case is the integration
variable) of the quantity [1 + (e — ¢)cosp] ~ *. As a consequence, in the
integrand of the one of the terms appears the factor [1 + (e — é)cosp] ~ >,
generating, as the final result, the integral As(e,é), which we are seeking for.

(18)  Aded) =1+ (e~ icoss]* dp =[[1 + (e~ oospl[1 + (e~ oose] o -
(e~ &)L + (e~ cosg)* d(sing) =I[1 + (¢ - cose] ~ dp -
(e HsinglL + (e~ )cose] | "~ 4(e ~&) FinfylL + (e - )cosy] g} =
= Ased) + 4e - J(1 - cosg)[1 + (e - )cose] * dp = Ac(e.d) +

T é)zzﬁl + (e = 6)cosp] ~° dg + 41%[1 _ (e - 6%c05%0] — 1}[1 + (e — é)cosp] ~* dp =

= Age,é) + 4(e - €)*As(e.é) + 4?])61 — (e - é)cosp][1 + (e — é)cosg][1 + (e — é)cosp] ~° dg —

13



- zfjjl + (e — €)cosp] ~° dp = Ag(e,é) — 4[1 - (e - €)*]As(e,¢) + 4A4(e,¢) —

- 437{[[1 + (e — €)cosp] —1}[1 + (e — &)cosp] ~* dp = Ag(e,e) + 4Aq(e,é) -

— 41 - (e — &)*]As(e,¢) — 4As(e,6) + 4A4(e,6) =
=—3As(e,6) + 8A4(e,6) — 4[1 — (e - €)*]As(eé) .

The above result enables us to express As(e,¢) by means of Asz(e,é)
and A4(e,é), and applying the relations (15) and (9), respectively, to write
the final form for this integral:

(19)  Asee) ziffl + (e — ¢)cosp] ~° dp = {4[1 - (e - &)1} '[- 3As(e.é) + TA(e.6)] =

={AlL-(-e) Iy {-32+(e- &) I[1-(e-€)] 7%+

+7af2+3(e - - (e-é)°1 " =A)1-(e-¢)*] VY8 +24(e—e)* +
+3(e-¢)1=

= (7r/4)(§ + 24e” +3e* — 48eé — 12e% + 24¢% + 18e%¢? — 12e¢® + 36%)[1 - (e — ¢)°] "Y'

With a view to a further use, we also write the expressions for the
integrals Ai(e,é), (i = 1,..., 5), when é(u) = 0. Geometrically, this situation
corresponds to the case, when all particles have orbits with some (constant)
eccentricity throughout the considered accretion disc. According to the
formulas (7), (8), (16), (9) and (19), we have, respectively:

2n

(20)  Aue,0)=](1 +ecosp) tdp=2r(1-e>)"Y?,
0
2n

(21)  Ay(e,0)=]J(1 +ecosp) 2dp =27 (1-€%) %2,
0

2m

(22) A3(e,0) = .[(1 + eCOSgo) -3 d(g = 71'(2 + ez)(l _ eZ)—S/Z ,
0

2n

(23)  A4e,0)= (1 +ecosp) *dp = (2 +3e})(1-e?) "2,
0

2n

(24)  As(e,0) Eg(l + ecosp) ~° do = (n/4)(8 + 24e? +3e”)(1 —e?) "2

14



2.2. Evaluation of integrals of the type
Ji(e.é) Ezfozl + ecosp) '[1 + (e — é)cosp] ~' de

The noteworthy for these integrals, which are also functions only of
the variables e(u) and é(u), is that their denominators are products of the
multipliers (1 + ecosp) and [1 + (e — é)cosp]. The first of them always
presents in the denominator in power one, while the later is risen to a power
I. We shall be interested in values of i equal to 1, 2, 3 and 4.

(25)  Ji(e¢) zj& +ecosp) “[1 + (e — é)cosp] ~idy =2ﬁ(1 + 8C0Sp) — eCosp] X
x (1 + ecosp) "[1 + (e - é)cosp] ~*dp :zgi(l + (e — é)cosp] ~'dg —

—[el(e - e')]chﬁ[l + (e — é)cosp)] — 1}(1 + ecosp) ~*[1 + (e — é)cosg] ~'de =

= 27[1— (e ¢)’] Y2 [el(e - é)]zgzl + ecosp) dp +

+ [el(e - e')]zgil +ecosp) "[1 + (e — é)cosp] ~tdp =
=27[1 - (e —¢)%] Y2 - 2ael(e — &)](1 - €®) "V 2 + [el(e — €)]I1(e,é).

Here we have used formula 858.525 from Dwight [6], which, in turn,
implies the relations (7) and (20), applied above. Consequently, equation
(25) gives that:

(26)  {1-T[elle-}di(ee) =[-¢l(e-¢)]di(ee) =
=27[1 - (e —¢)%] Y% - 2xfel(e — &)](1 - €?) ~V2.

After multiplication by [- (e — é)/¢], we obtain the following result
for the integral J;(e,é):

@7)  diee) EZIE[l +ecosp) "1 + (e - é)cosp] "t dg =
= alé){e(l—e) Y2 (e- &)l - (e - &)7 V2.

Two circumstances must be pointed out, concerning the validity of
this formula:

15



(1)We have supposed that (e — ¢) # 0. If it is not the case, then from the
definition (25) it follows that Ji(e,é = €) = A1(e,0) = 2z(1 — €2 =¥ 2 (see the
solution (20)). But for e(u) = é(u), equation (27) gives the same result, i.e., it
is valid also for the case e(u) — ¢(u) = 0, and the limitation e(u) — é(u) #0
makes no sense.

(ii) In the relation (27) é(u) must not be equal to zero. Of course, if we
directly set into the definition (25) é(u) = 0, we easily find that:

(28)  Ji(e,e=0) Ezﬁl +ecosp) ~2dp = Ay(e,0) = 2z (1 —e?)~¥?,

From the other hand, we have the availability to apply in (27) the
L’Hospital’s rule, in order to evaluate the right-hand-side of this expression,
when é(u) approaches zero. In particular, it is fulfilled the condition:

(29) lim{e(1-e)"Y2—(e-9)[1-(e-¢)’] Y% =0.
é(u) —0

Further, computation of the derivative with respect to ¢ of the
difference into the curly brackets gives (after taking the limit ¢ — 0):

(30) limaloe{e(1—e?) " Y2—(e-e)[1-(e-¢)] V%=
(u) -0
Sl [~ (e~ Y] 7+ (e [~ (e~ Y] 7 = (1) 2
e'(u) —0

Consequently, the above result (30) implies that the L’Hospital’s
rule, when applied to (27), leads to the same result (28), derived by a direct
substitution ¢(u) = 0 into the original formula for the integral Ji(e,é). In that
sense, we shall use the expression (27) without checking whether é(u) # 0
or not, having in mind that the L’Hospital’s rule ensures a continuous
transition through the point ¢(u) = 0.

(31)  Ju(eé) 51& +ecosg) "'[1 + (e — é)cosp] ~? dg :Z(I:[[(l + €C0Sp) — ecosp]x
x(1 + ecosp) "Y[1 + (e — é)cosp] "% dp :1f1 + (e — é)cosp] ~2 dg —

—[el(e - e')]z{:i[l + (e — €)cosp)] — 1}(1 + ecosp) '[1 + (e - é)cosp] 2 dyp =
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=27[1-(e-¢)*] %2 [el(e - e')ﬁo(nl +ecosp) “[1 + (e — é)cosp] L dg +

+[el(e - e’)]ifl + ecosp) [ + (e - &)cosg] 2 dp =
= 221 = (e = 6] ¥ = [el(e — &)]Jx(e.6) + [e/(e — &)]Jx(e.6).

Here we again have used formula 858.535 from Dwight [6] (see also
the expression (8) for Ax(e,¢) above) and the definition (25) for the integral
(25). The equation (31) enables us to write an explicit form for J,(e,é):

(32)  —[él(e - é)]Ia(e.) = 2a[1 - (e — &)°] ¥ - [el(e - ¢)]31(e.€),
or, after dividing by [- é/(e — ¢)] (under the condition ¢é(u) # 0), we obtain:
(33)  Jaee) =-2r[(e-e)el [1-(e—e)] Y%+ (ele)ds(e.e).

We are in a position to apply the result (27) for the integral Ji(e,é),
having in mind the two remarks, which we have already done about the
cases e(u) —é(u) =0 and é(u) = 0:

(34)  Jy(e ) 52{)"(1 +ecosp) "[1 + (e — é)cosp] 2 dp = -2z [(e—¢é)le] [1 - (e - ¢)?] ¥ %=

—2re(e-eé)leé] [1 - (e—¢)?1 Y2+ 2z(e¥e®)(1 - D)~ YV2 =
=-2n(e-¢)¢ [1-(e—¢)] ¥ e-e’+ e+ 2e% - eé’) + 2n(e”)(1 - ) V7.

Like the case, considering the integral J;(e,é), we again strike with
the problem of the applicability of the expression (34) in the general
situation. Namely, when e(u) — é(u) = 0 and /or é(u) = 0.

(i) If the supposition e(u) — é(u) # 0 is not valid, then from the definition
(31) for the integral J,(e,é) it directly follows that J,(e,ée =€) = Ai(e,0) = 2«
(1 - e~ Y2 (see (20)). It is evident that for e(u) = é(u), the expression (34)
gives the same result. Although, during the derivation of (34), it was
supposed that e(u) — é(u) # 0, in the final result about J,(e,é) this limitation
is not leading to any singular effects.

(if) Also, in the relation (34) é(u) must not vanish. To avoid this
constraint, we may directly set ¢(u) = 0 in the definition (31). The integral is
not singular and is already evaluated. Concretely:

(35)  Jy(e,é=0) zzﬁl +ecosp) ~° dp = Ag(e,0) = 7(2 + e3)(1 - e?) %2,
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We, of course, are able to ask whether the limit transition ¢(u) — 0 in
the formula (34) will make sense, giving the above result (35). The
supposition can be checked by applying two times of the L’Hospital’s
rule/theorem. To do the proof in a more compact manner, let us rewrite the
final result (34) into the following form:

(36)  Jy(e.é) = 2w %(1 - ed) " Y?B(e,é),
where the function B(e,é), according to (34), is defined as:

@7)  Beg)=[1-(e- e)]—3/2{e[1 (e—¢)]¥2+ (—e?+e*—3e% + ¢ +
+3e%? —ee’)(1 - &)Y %}

It is easily seen that B(e,e = 0) = 0. The other conditions, needed for
the applicability of the L Hospital’s rule with respect to the relations (34)
and (36), when ¢(u) — 0, are obviously fulfilled. The first partial derivative
of B(e,¢) with respect to the variable é(u) is:

(38) B(ed)oe=(1-e)V[1-(e—¢)°] ¥%(2+e*-2e+¢) =
=(1-e)V[1-(e-¢) V%2 +(e-9)].

Obviously, the partial derivative 0B(e,é)/oé vanishes for é(u) = 0. We
again see that the partial derivative with respect to ¢(u) of the denominator
in (36) is 2¢(1 — %) and also vanishes for é(u) = 0. Nevertheless, the last
circumstance does not cause troubles, when the transition ¢(u) — 0 is
performed. The availability of the factor é(u) both in the dominator and the
denominator enables us to cancel out it, and the expression becomes free
from the singularity at é(u) = 0. In such a way, the needed condition (v) in
the formulation of the L’Hospital’s theorem (given in chapter 2.1. above) is
successfully fulfilled, and the transition é¢(u) — O does not generate a
singularity. Therefore:

(39)  Ji(e.e =0) = lim{2x[0B(e,¢)/oe)/o[¢X(1 - %) Y ?)/oe} =
(u) —0
= lim [27(1 N ) Y262 + €2 - 2e¢ + N{[2¢[ 1 - (e - ¢)1¥ (L - )V} =
é(u)—0
= 71_(2 + eZ)(l _ e2) -5/ 2.

This result is the same as the relation (35), where is used a direct
method for computation of the case é(u) = 0, without the application of any
continuum transitions to this special point é¢(u) = 0. Consequently, we are
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able to use the formula (34) also for values ¢(u) = 0, keeping in mind that
the singularity may be overcome by means of the L’Hospital’s rule.

(@0) )= (1 + ecosy) 1+ (e - e)cosy] > dp = [(1 + ecosy) - ecosplx
(L + ecos) 1L+ (¢~ cose]  do = J{L + (e~ oose] ~ do -
— fel(e ~ {TL + (e - )cosy] - 1H(1 + ecosy) {1 + (e - e)cose] o =
= Ae.d) - [elle - AL + ecosy) 11 + (e - )cose] o +

+ [el(e — é)]IZl +ecosp) “[1 + (e — é)cosp] 2 dp =
= Az(e,é) — [el(e — €)]d(e.e) + [el(e — €)]Is(e,é).

Transferring the unknown function Js(e,é) into the left-hand-side, we
obtain:

(1) [L-el(e-&)]Is(e,é) = [l — &)13x(e,6) = Ag(e.é) - [el(e - €)]1Ja(e.6).

During the present derivation, we are supposing that both ¢(u) # 0
and e(u) — eé(u) # 0. In agreement with this suggestion, we rewrite the above
relation as:

(42)  Js(e.6) = - [(e - &)/e]Ag(e.é) +(elé)Iy(e.é) = — m(e - E)[2 + (e - ¢)’]e
X[1-(e—¢)?] Y- 2re(e —é)(e — % + 2e% —ec?)e [1— (e — )] ¥ %+
+2me% (1 -¢?) V2=
=—m(e—¢)é[1- (e —€)?] ¥?4(2e® — 4e* + 2e° + 2ee + 6% — 8e% + 26% + €%6° +
+12e%6® — deé® — 8e%% + ¢* + 2e%6%) + 27’63 (1 - )" YV2

We again strike with the problem concerning the validity of the
expression (42). If we set into the definition (40) e(u) = ¢e(u) (i.e., e(u) —
— é(u) = 0), the direct computation of the integral Js(e,é = €) leads to the
following simple result (taking into account the equality (20)):

(43)  Ji(eé=e) 52{([1 +ecosp) "t dp = Ai(e,0) =27 (1-¢e%) Y2,
The same answer gives equation (42), if the equality e(u) — é(u) =0

is set into it. Therefore, the established analytical evaluation (42) for the
integral Js(e,é) may be used also in the case when e(u) — é(u) = 0. This
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reasoning remains valid even if e(u) = ¢(u) = 0, under the condition that
e®(u) and ¢*(u) are preliminary cancelled out inthe lastterm 2ze® ~3(1 -
— 6%~ Y2 of the expression (42). Then the result is trivial: J3(0,0) = 2z. Like
the previous two cases about the integrals Ji(e,é) and J,(e,é), the special
case ¢(u) = 0 can be resolved by means of a direct substitution of this
constraint into the definition of the integral Js(e,é = 0):

(44)  Jy(ec=0) Ezﬁl +ec0osp) ~* dp = Aq(e,0) = 7 (2 + 369)(1 - €%) 2.

Here we have applied the evaluation (23) of the function A4(e,0). It
may be checked, that in the limit ¢(u) — 0, the expression (42) gives a
result that coincides with the last term of the equality (43). For this purpose,
the L’Hospital’s rule must be come into use again. We shall not perform
these tedious calculations in the present paper, which are essentially of the
same character, as in the cases of the integrals J;(e,¢) and J(e,é), considered
under the transition ¢(u) — 0. We shall only mention, that such a transition
gives a continuous result, when is applied to the relation (42). The same
approach will be put into use under the computation of the integral Js(e,é),
to which we are now going on.

@) 3ied)=J(1 + ecosp) 1+ (e - )cosy]~* dp = (1 + ecosy) - ecosplx
(1 +ecosy) [1+ (e - )cosp] * dp = 1.+ (¢~ oose] o -
~ (e~ L1 + (¢~ cosg] ~13(L + ecose)T1 + (e~ )cosg] * dp =
= Aded) - [efle- L1 + ecos) 1+ (e~ Scose] > dp +
+ [ee - (L +ecos) [1+ (e - e)cos] * dp =

= Ay(e,e) — [el(e — €)]Is(e,e) + [el(e — €)]Ja(eé).

We have applied above the definitions (9), (40) and the first
equality/identity in (45). Supposing that both é(u) # 0 and e(u) — é(u) # 0,
we proceed further to evaluate the integral Js(e,e) through the already
computed functions of e(u) and é(u) As(e,¢) and Js(e,é):
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(46) [1-e/(e—eé)]da(e.e) =—[él(e — €)]I(e,é) = Asle,é) — [e/(e — €)]35(e,é).

Consequently, on the basis of the relations (9) for Ay(e,¢) and (42)
for Js(e,e), we obtain the final expression for Js(e,¢) in an explicit form in
terms of e(u) and é(u):

(47) Ju(e,e) sf{& +ecosp) "[1 + (e — é)cosp] ~* dp = — [(e — e)/é]A4(e,é) + (elé)Is(e.é) =

=—(e-&)2+3(-¢é)le 1-(e—-¢)°] "2 —ne(e - &)( 26 — 4e* + 2e° + 2e¢ +
+6e% — 8% + 26 + e%¢% +12e%¢° — dee® — 8e%¢® + ¢* + 2e%6")6 1 - (e - ¢)?] V2 +
+ 27Te4é_4(1 _ e2)—l/2 =

= 7(— 2e* + 6e° — 6e® + 26’0 —14e%¢ + 28e¢ — 14e% + Te'e? — 49e%? + 42e%° +
+35e% —70e"¢® + 26" + 8e%6* + 70e%” - 10e¢” — 14e%° — 42e°¢° + 3¢° + 7%’ +
+14e%® —ee” — 2e%") + 2mee Y1 - %) V2

Although the above expression is derived under the restriction e(u) —
—¢é(u) # 0, it makes sense even if e(u) — é(u) = 0. In the last case, the relation
(47) shows that:

(48) Jy(e,e =) = 27e*e (1 -e?) V2= 2x(1-¢€%) Y2

because, obviously, the first two terms in the right-hand-side are equal to
zero for e(u) — é(u) = 0, and remains only the last term, where e(u)/é(u) = 1.
Of course, the integral Js(e,é = e) may be directly computed by setting
e(u) = é(u) into its definition (45):

(49)  Ju(ee=e) Echj([l +ecosp) "t dp = Ai(e,0) = 2z(1 —e?) V2,

where we have again used the relation (20). The two expressions (48) and
(49) coincide, and, therefore, the restriction e(u) — é(u) # 0 for the solution
(47) can be removed. This conclusion continues to be valid even if ¢(u) = 0.
Concerning the general case ¢(u) = 0, the definition (45) also directly
enables us to evaluate the wanted function J4(e,0), namely:

(50)  Jau(e,0) 52gf(ll + ecosp) ~° dp = Ag(e,0) = (n/4)(8 + 24e* +3e*) (1 - e?) " %2,

where we have applied the relation (24). It is possible to check, by means of
the L’Hospital’s rule for revealing of indeterminacies of the type 0/0, that
the passage to the limit é(u) = 0 in the relation (47) leads to the same result
(50). Consequently, such a transition through the point é(u) = 0 is
continuous. Further we shall apply formula (47) also when é(u) = 0, having
in mind that the indeterminacy is overcome preliminary through the
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L’Hospital’s rule. Like in the previous case for the integral Js(e,é), we shall
skip, for reasons of brevity, the proof of the statement that the transition
é(u) — 0in (47) gives the same result as the relation (50).

In conclusion, we note that the considered number of integrals of the
type Ji(e,é), (i = 1, 2, 3, 4), is enough for our consequent applications. They
will be made in the forthcoming papers (in particular, paper [8]), devoted to
the simplification of the dynamical equation of the accretion discs with
elliptical shapes. Summarizing some of the results in this chapter, we
mention that for all i = 1, 2, 3 and 4 we have Ji(e,¢ = 0) = Ai+1(e,e = 0), and
Jile,e =€) = As(e,6 = 0) = 27(1 — €3 "2,

2.3. Evaluation of integrals of the type
Hi(e,é) Ezgl +ecosp) ~'[1 + (e — é)cosp] ' de

These auxiliary integrals will be evaluated analytically for values of
the power i =1, 2, 3 and 4. Their estimates will be applied, in own turn, for
computation of other auxiliary integrals, which will be made in subsequent
papers. We begin with the most simple of them, namely, the integral
Hi(e,é):

(51)  Hu(e) Ezﬁl +ecosp) " [1 + (e — é)cosp] ~L dp = Ji(e,é) =
= (Zﬂ/e){e(l _ ez) -2 _ (E _ e)[l _ (e _ e.)z] —1 2}’

where we rewrite formula (27) above. All remarks, whish were made about
the validity of the estimation (27) for the integral Ji(e,¢), automatically
remain in power also for Hi(e,¢). The next step is to find the integral Hy(e,é)
as a function of its arguments e(u) and é(u):

(62 Hiled) = (L + ecosp) 1 + (e~ )oosg] *dp = {11 + (¢~ oosy] -
- (e~ )cosp}(1 + ecose) TL + (¢~ oose]*dp = [(L + ecosp) > dp -
- [fe- &Ve{( 1 + ecosg) ~ 11t + ecosg)TL + (e - )cosg] ~ dp = Ad(e0) -
~ [fe - eYell(L + ecos) 1+ (e elcose] dp + [(e - Veli{1 + ecosg)

x[1 + (e — ¢)cosp] " dp = Ay(e,0) — [(e - é)/e]H.(e,é) + [(e — é)/e]H.(e,é) =
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=2r(1-e)" ¥ 2n(e—-e)e ' (1-e) Y2+ 2n(e—e)’e e 1 -(e—€)] 2+
+ [(e — é)/e]H,(e,é),

where we have applied the above already established results (21) and (51)
Ay(e,0) and Hj(e,é), respectively. Therefore, the equation (52) ensures the
following solution for the wanted function Ha(e,é):

(53)  [1-(e-é)le]Ha(e,é) = (ele)Hy(e,e) = 2n{ec[1 — (e — )]~ 2 — e(e — ¢)(1 — €?)x
x[1 - (e - é)Z]l/Z +(e- e')2(1 _ ez)s/ Z}G_lé_l(l _ ez)—s/z[l —(e- é)z] -u2

After multiplying the both sides of this relation by e(u)/e(u), we
obtain the final analytical expression for the integral Ha(e,é):

(54)  Ha(ee) = 2n{(e - 6)’(L - e))¥ 2 + (—e? + e* + 2e6 — e%)[1 - (e — ¢)’]V 2}e 2
x(l _ eZ)—S/Z[l _ (e _ 6)2] —1/2.

Of course, this result is derived under the assumptions that
[e(u) #0] N [e(u) # O]. It can be rewritten also into the form:

(55) H,(e,é) EZJ;El +ecosp) 1 + (e — é)cosp] “tdp =
=l {(e-¢)[L-(e-e)"] Y2+ (-e?+e*+2ec-€%)(1-e) ¥}

Obviously, the formulas (54) and (55) have nonsingular meaning for
e(u) = 0 (preserving the restriction ¢(u) # 0), namely:

(56)  Hy(0,6) = @alA)[*(1 - ¢%) Y2+ 0]=2x(1- &) V2

A direct computation for the case e(u) = 0 (with é(u) # 0) for the
integral Ha(e =0,¢) shows that:

(57)  Hy(0,0) 52{)?1 —écosp) tdp = 2x(1 - &%) Y2

which coincides with (56). Here we have again used formula 858.525 from
Dwight [6]. Of course, there is not problem to apply the expressions (56)
and (57) when ¢(u) = 0. They both give the right answer H»(0,0) = 2x.

With respect to the general case ¢(u) = 0 (when e(u) does not need to
be equal to zero), it may be noted that the expression in the curly brackets in
(55) approaches zero, when é(u) also approaches zero:

(58) lim{(e-¢)’[1-(e-¢)] Y3+ (-’ +e' +2ec-e%)(1-e) ¥} =

é(u)—0
- e2(1_82)71/2_82(1_82)( 1_82)73/22 0.
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It is easily verified, that the other conditions for the applicability of
the L’Hospital’s theorem are also fulfilled. Consequently, we are in a
position to apply the L’Hospital’s rule with regard to the right-hand-side of
the relation (55), in order to overcome the indeterminacy of the type 0/0,
when ¢é(u) = 0. In that approach, we have to evaluate the limit transition:

(59)  limoloe{(e—e)’[1—(e—e)] Y7+ (-&* +e*+2e6-e)(1-e*) ¥} =
’(u) —» 0
i Iim{— 2(e - e)[l - (e - e)z] -vz_ (e — 6)3[1 _ (e _ 6)2] -2,
é(u) —0
+ (28 _ eS)(l _ eZ)—S/Z} - _ 28(1 _ e2)—1/2 _ e3(1 _ eZ)—3/2 +
+ (Ze _ e3)(1 _ e2)—3/2 =0.

The computation of the expression (55) in the limit é(u) — 0 again strikes
with the problem of evaluating of an indeterminacy of the type 0/0. To solve
the task, we shall use for a second time the L’Hospital’s rule. The premises
to do this are available. In particular, we see that:

(60)  limaloe{-2(e-e)[1-(e—e)’] Y2—(e-e)[1-(e—¢)°] ¥+
’(u) —» 0
i (e-e)1-e)" = 1im{2[1-(e- &)’ Y2+ 2@ -¢&)1-(e-¢)?] ¥+
’(u) —» 0
+3(e-¢)’[1-(e- &) = +3(e-¢)'[L-(e-¢)1 "% =
- 2(1 _ e2)—1/2 + 582(1 _ eZ)—3/2 + 3e4(1 _ eZ)—S/Z - (2 + eZ)(l _ eZ)—S/ZI

Consequently, the twice recurrent application of the L’Hospital’s rule
with respect to the right-hand-side of the equation (55), leads to the
following result, when é(u) approaches zero value:

61)  Hy(e,0) = lim{(2ré){(e — &)1 - (e — 67 ~Y2 +
’(u) —» 0
+(-e?+ ei +2e6-e%)(1-e°) " =72 + D (1 -€%) Y2

From the other hand, the direct calculation for é(u) = O leads to
(according to the relation (22)):

(62)  Ha(e,0) Ezgl +ecosp) > dp = As(e,0) = 7(2 + e?)(1 —e?) %2,

which coincides with the previous equality (61). In this connection, we note
that the transition ¢(u) — 0 in (54) and (55) is continuous. That is to say,
when we use the later two formulas for ¢(u) = 0, we shall subtend the
meaning 7(2 + e?)(1 — %) ~ ¥ 2. Now it is trivial to evaluate H,(e,é) when
both e(u) =0 and é(u) = O:
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63)  H00) zz({"dq) - 2.

The same result follows if we set in (56) é(u) = 0, or if we set in (61)
e(u) = 0. This implies that there is not matter the order of the performing of
the transitions e(u) — 0 or ¢(u) — 0. The next integral, of the considered in
the present paragraph type, is Hs(e,é) :

(64)  Hy(ed) zzﬁl + ecosp) °[1 + (e - é)cosg] "' dg =2ﬁ[1 + (e - €)cosp] -
— (e - &)cosp}(1 + ecosp) “3[1 + (e — é)cosp] "Ldy :Zﬁl + ecosp) ~* dp -
-[(e- e')/e]zfof( 1 + ecosp) — 1](L + ecosp) 3[1 + (e — é)cosp] ~1dp = As(e,0) -

-[(e- é)/e]zfof(tl +ecosp) “[1 + (e — é)cosp] ~tdg + [(e - e')/e]z{:zl + ecosgp) >
x[1 + (e — é)cosp] ~tdp = As(e,0) — [(e - é)/e]Ha(e,¢) + [(e — €)/e]Ha(e,é).

After taking into account the expressions (22) and (55) for As(e,0)
and Ha(e,é), respectively, the unknown function Hs(e,é) may be find in an
explicit form:

(65) [1-(e —e)/e]H (e, e) (¢le)H; (e e) T2 +e?)(1-ed) %2 -
—2n(e—¢é)’e e [1 (e-¢)]7 Y2
—2n(e—é)(— e +e* + 2e6 - ee)e‘le‘z(l—e)‘M.

After multiplying this equation by e(u)/é(u) and some other
simplifications, we obtain:

2n
(66)  Hs(e,e) = (1 + ecosp) 3[1 + (e — é)cosp] ~*dyp = me(2e? — 4e* + 2e° — 6eé +
0

+10e% — 4e% + 66% — 5e%6° + 2e*6?)e 3(1 - e?) Y2 -

—2n(e—-é)’é -3[1 —(e-¢)]7 Y%=

= 7{(2e® — 4€° + 2e — 6% + 10e*e — 4e%6 + 6ec® — 5% + 2e%%)[1 - (e - ¢)’] V% -
_ 2(e _ 6)3(1 _ e2)5/ Z}e——3(1 _ eZ) —5/2[1 _ (e _ e)Z] —1/2.

It is evident from the above derivation, that the solution (66) is
determined under the suggestion that both e(u) # 0 and ¢(u) # 0. The first
restriction e(u) #0 may be eliminated, if we note that the right-hand-side of
(66) makes sense even if we set into it e(u) = 0, preserving the other
condition é(u) # 0:
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2n

3(0,6) = J(1 - écosp) "tdp = 2m’e (1 - ¢?) V2 =271 - &%) V2

67 H.(0 Il ld 2331 21/221 2y-1/2
0

Of course, the non-vanishing of é(u) ensures the possibility to cancel
out the factor é3(u), which presents into the nominator and the denominator
of the above quotient. The same result may be established, if we set directly
e(u) = 0 into the definition (64)of the integral Hs(e,é), and apply the already
known relation (20) for the integral A;(é,0):

(68)  Hs(0,¢) 52{)?1 — écosp) ~tdyp = Ay(e,0) = 27(1 - ¢%) V2.

In this manner, we conclude that the introduced during the derivation
of equation (66), restriction e(u) # 0 is not burdensome. The final result (66)
nevertheless gives the right answer, if we formally set into it the “peculiar”
value e(u) = 0. A little more difficult is the problem concerning the other
restriction é(u) # 0. To consider this case in a compact form, let us introduce
the notation C(e,¢) about the term into the curly brackets in the relation (66):
(69)  C(e,é) = (2e° - 4e° + 2e” — 6e?¢ + 10e*e — 4ee + Bee” — 5e%6° + 2e%6%)x

x[1— (e - e.)z] 12 _ 2(e - é)3(1 _ 62)5/2.

Then we rewrite (66) into the following way:
(70)  Hs(e,e) = 7C(e,e)e (1 -e%) ¥ [1 - (e - ¢)’] V2.

Temporally we disregard the factor z(1 — e?) =¥ ?[1 - (e — ¢)*] V2,
which does not cause troubles for é(u) = 0, and concentrate on the quotient
C(e,e)/é®. If the later has a reasonable meaning under the limit transition
é(u) — 0, then the total product (70) is also defined — it is evaluated simply
by multiplication with z(1 — €®) ~ 3. Obviously, for é(u) = 0, we have
C(e,0) = 0, and the other conditions for applying of the L’Hospital’s
theorem (when é(u) — 0) are fulfilled too. Computation of the limit
lim 0C(e,é)/0é gives a zero result:

é(u) —0
(71)  lim 8C(e,e)ldé = lim{( 6e + 10e* — 4e° + 12e¢ — 10e’¢ + 4e°¢)[1 — (e — €)7] 2 +

é(u)—0 é(u)—0

+ (26® — 4e° + 2e” — Be%e + 10e*e — 4e% + Bec® — 5e’¢? + 2e°6%)(e — )%

x[1-(e—¢)] Y2+ 6(e—e)’(1-e’) %%} = (- 66 + 10e* - 4e%)(1 - ) V7 +

+e(2e° - 4e® + 2e")(1—e?) Y2 + 6e*(1 - e?)¥2=0.

The derivative of the denominator with respect to é(u) is 3¢*(u),
which approaches zero, when ¢(u) — 0. The conditions for application of
the L’Hospital’s rule for computation of lim[(1/3¢%)dC(e,¢)/o¢] are again

é(u)—0
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available, and we have:

(72)  lim &*C(e,¢)/0¢ = lim{(12e — 10> + 4e%)[1 — (e — €)*] Y2 + (- 6€% + 10e* — 4e° +
é(u)—0 é(u) —0
+12eé — 10e%¢ + 4e°¢)(e — &)[1 - (e — ¢)’] " Y2 + (- 8e® + 14e° — 6e’ + 24e% —
—30e%e + 12e% — 18e¢” + 15e%° — 6e°6))[1 — (e — €)?] V% — (2e* — 4e° + 2e° —
—8e% + 14e% — 6e’¢ + 12e%6° — 15e*¢” + 6e%° — Beé” + 5e’¢° — 2e%¢%) (e — ¢)x
x[1-(e-¢)’] ¥?-12(e-€)(1-€’)°?} =
= lim{(12e — 48¢> + 72e° — 48e’ +12¢° +90e% — 198e”¢ + 156e°% — 48e%¢ — 54es” +

éu)—0

+ 22537 — 198e°¢% + 72e’é? — 132e%6° + 120e*¢® — 48e°6° + 36e¢” — 308" +
+12e%M[1 - (e—¢)] Y2 -12(e - &)(1 —€®) %%} = (12e — 48e® + 72e° — 48’ +
+12e° —12e + 48e® — 72¢° + 48e’ — 12¢°)(1 - e?) " ¥?=0.

Now we are in a position to use the L’Hospital’s rule for a third time
during the procedure of the evaluation of the solution (66) under the
transition é(u) — 0. Skipping some of the tedious intermediate algebraic
computations, we can write:

(73)  lim &°C(e,¢)/0¢® = (12e — 48e® + 72e° — 48e” +12e° )(1 — € =¥ + (90e? — 198e* +

é(u)—0
+156e® — 48e®)(1 - e?) " ¥2+ 12(1 - e%) %2 = 6(1 - )2 + 3¢?).

This time we obtain a non-zero result, and more importantly,
5% (¢®/oeé® = 6 # 0. Having also in mind, that for the first factor in the
expression (70) we have:

(74)  lim{z(1-e>) "Y1 -(e-¢) V3 =n(1-¢€%) "3,
é(u)—0

finally, we are able to summarize the following result:
(75)  limHs(e,é) = lim{zC(e,¢)¢ 3(1—e®) Y1 (e - )] V%)=

éu)y—0 éu)—0
=22 +3e’)(1-¢) "2

There is not a problem to evaluate directly the integral Hs(e,¢) for
the special case é(u) = 0 without making any transition to this value into an
expression of the type (66) (or (70), respectively), which is obtained under
the preliminary elimination of this case. Therefore, the direct substitution
é(u) = 0 into the definition (66) leads to (taking into account the already
known result (23) for A4(e,0)):

(76)  Hs(e,0) Ezgl +ecosp) " * dp = Ay(e,0) = 7(2 + 3e?)(1-e?) "2
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The coincidence of the right-hand-side of the formulas (75) and (76)
implies that the analytical evaluation (66) for the integral Hs(e,é) ensures a
continuous transition through the “peculiar” value é(u) = 0. Namely, this
property of the analytical derivation (66) will be implicitly understood,
when it will be used in the applications. Without specifying whether ¢(u) is
equal to zero or not. The same remark concerns the situation e(u) = 0 or
e(u) # 0, and also the combination [e(u) = 0] N [e(u) # O]. In the later, all
established above expressions give the right value H3(0,0) = 2x.

The next integral Hy(e,é), which we shall try to compute analytically,
is the last in the series of integrals of the type, considered in the present
subsection. In particular, this is stipulated by the circumstance that, in fact,
this is the integral 1,2 n+3(€,é,n = — 2) for the concrete value power n = - 2.
We apply here a notation, which will be put in use in forthcoming papers,
where we shall adopt another system of designations for the considered
integrals. This integral Hy(e,é) participates in an explicit form into the
Wronski determinant, establishing the linear dependence/independence
between the integrals lo.(e,¢,n) and lo+(e,é,n).

(1) Hu(e) = bz, maleén = 2) = (1 + ecosp) “[1+ (e - )cosy]  dp =
= {11+ (e~ ecosy] - (e - )cosp}L + ecosg)[1 + (¢~ )cosg] ~ dp =
= [+ ecos)~* d - [(e - (1 +ecosy) - 11(1 + ecosg)
(1L + (¢~ )oosg] ™ do = Ae.0) - [ - Nell(1 + ecosp)

x[1 + (e — é)cosp] " dop + [(e — e‘)/e]zgl + ecosp) “*[1 + (e — é)cosp] " dp =
= Ay(e,0) — [(e — e)/e]Ha(e,é) + [(e — é)/e]H4(e,é).

Taking into account the expressions (23) and (66) for A4(e,0) and
Hs(e,é), respectively, we are able to resolve the above equation (77) with
respect to the unknown function H(e,é) of the variables e(u) and é(u). We
transfer Hy(e,é) into the left-hand side, and taking notice of the of the
equality:

(78) [1 - (e - e)le]Ha(e,e) = (ele)Ha(e,é),
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we write the following analytical solution:
2
(79)  Hu(eé) = lna nea(eé,n =-2) zg(l +ecosg) “*[1 + (e — é)cosp] L dg =

= e’ (2 +3e?)e (1 -e) " e (1 - €)Y 1 - (e - €)7] V¥{(e - ¢)(2€® -
—4e°+ 2e” — 6e%¢ + 10e*¢ — 4e% + Bee? — 5e’e” + 2e%¢%)[1 — (e — )] V2 -
—2(e-9)(1-e)¥}=me 41 -e%) " "’[1 - (e - 6)°] V2{(2e8® + 3e%6%)x

x[1 - (e - )] 2 - (2" — 6e° + 6e® — 2e1° — 8e%¢ + 22e% — 20e’¢ + 6% + 12e%¢% —
— 27e%% + 21e%° — 6e%? — Bee® + 11e%° — 7e°%¢° + 267e'3/)[1 —(e-0)V%+
+2(-e&)'1-e)" =me (1 -e?) "1 - (e - )" V(- 2¢* + 6e° — 6e® +
+ 2e10 + 8e®c — 22e% + 20ec — 6e”%¢ — 12e%6? + 276 — 21e%? + 6e% + 8ee® -
8% + 7e%° = 2e")[1 - (e - )]V 2+ 2(e - ¢)(1-€) "%} =

=g7e (1 - e?) " "?%(- 2" + 6e° — 6e® + 210 + 8e®¢ — 22e%¢ + 20e’¢ — 6e% —

— 12626 + 27e%6® — 21e%” + 6% + 8ec® — 8e®¢® + 7e°6® — 2e76°) +

+2n(e—é) e [1-(e-¢)] V2

Like the previous computations, this solution (79) is derived under
the assumptions [e(u) # 0]N[é(u) # 0]. But nevertheless, it has a definite
meaning for e(u) = 0. Namely (under a preserving of the restriction ¢(u)+ 0):

(80)  Ha(0,6) = 2m6*(1 — &)~ Y24 = 2n(1 - %) V2

A direct computation (by means of a direct substitution e(u) = 0 into
the definition (77) of the integral Hs(e,é)) gives the same result as (80):

81)  Hi(0.0) 52{)?1 _éc0sp) L dp = Ay(6.0) = 22(1 - ?) V2 ;

(see formula (20) for A1(e,0)).

Therefore, because the evaluation (81) does not require the avoiding
of the value e(u) # 0, we conclude that this restriction is not a factor, which
hinders to apply formula (79) in this case. The consideration of the other
situation ¢é(u) # 0 requires a more complex treatment, in order to reveal the
behaviour of the result (79) under the transition ¢(u) — 0. Having in mind
our experience with the previous such problems, we shall try to explore
again the L Hospital’s rule. It is appropriate to put to use the before the last
expression in the right-hand-side of (79), because the two summands in the
last expression of (79) do not separately satisfy the conditions (ii) and (v)
in the formulation of the L’Hospital’s theorem. Concretely: nullification of
the limit lim f(e,é) and existing

é(u)—0
of the limit lim [f '(e,é)/g'(e,é)]. In view of that, we define the function
é(u) —0
D(e,é) as follows:
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(82)  D(e)= (- 2e* + 6e®— 6e® + 2e'° + 8e®¢ — 22e% + 20e’¢ — 6e%¢ — 12e%6° +
+27e%? — 21e5%% + 6e%6? + 8ec® — 8e¢® + 7e%6® — 2e"&%)[1 - (e — €)]V 2 +
+2(e-¢)(1-e)"2

This definition enables us to rewrite the solution (79) in a more
compact form:

(83)  Hu(e,6) =nD(e,e)e *(1—e%) "’ [1-(e-¢)’] V2
Because

(84) lim{z(1-e)"" 1-(e-&)] Y} =n(1-€)"*
é(u)—0

we, as in the previous consideration of Hs(e,é), temporally disregard the
factor z(1 — e%) =" ’[1 - (e - ¢)’] ~ ¥ 2, and concentrate on the quotient
D(e,é)/¢* under the limit transition é(u) — 0. Obviously:

(85)  D(e,0) = (- 2¢* + 6e° — 6e® + 2e™°)(1 — ) V2 + 26*(1 - )7/ ? =
=-2e*(1-3e’ +3e* - ed)(1 - )2+ 2e*(1 - €)% =
- _ 2e4(1 _ e2)3(1 _ e2)1/2 + 2e4(1 _ e2)7/ 2’

which is a premise to make use of the L’Hospital’s rule, in order to
investigate if the expression (79) or, equivalently, (83) are well behaved,
when ¢é(u) approaches zero. We shall not enter in details of the needed (to
some extend) tedious algebraic and differential calculations, and only give
here some of the final results. For example, it may be shown that:

@6)  lim aD(e,é)/o¢ = lim &°D(e,é)/o¢* = lim 8°D(e,é)/dé® = 0.
é(u) — 0 é(u) —0 é(u) —0

The above nullifications are essential conditions (among the others,
of course!) to apply the L’Hospital’s rule several times by turns. Finally,
taking the limit ¢(u) — 0 after the fourth differentiation:

(87)  lim &*D(e,e)/oé" = 6(8 + 24e” + 3e*)(1 - e?) V2,
é(u)—0

we obtain a non-zero result. In view of the fact that the fourth derivative
o*(eM1oe* = 24 # 0, and taking into account the temporally disregarded
factor (84), we arrive to the following conclusion:
(88)  limHq(e,é) = lim{zxD(e,e)e *(1 - e?) " [1-(e-¢)] Y% =

eu)—0 ¢éu)—0

= (67/24)(8 + 24 + 3e*)(1-e%) "Y1 —e?) V(1 -e?) V2=

= (z/4)( 8 + 24 + 3e*)(1 - ) Y2
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A direct computation, based on the substitution é(u) = 0 into the
definition (79), leads to an equivalent to (88) final expression. That is to say,
the evaluation procedure does not include in the intermediate calculations
terms, containing the factor ¢(u) into their denominators. And, consequently,
they do not suffer from a “peculiar” behaviour, when ¢é(u) approaches zero.
The integral Ha(e,é) becomes for é(u) = 0 an already known function of

e(u):
(89)  Hq(e,0) Ezgl +ecosp) ~° dp = As(e,0) = (7/4)( 8 + 24e* + 3e*)(1 —e?) ~¥?,

where we have put into use the estimation (24). Like the previous
considered cases, the conclusion which follows, implies that under the limit
transition é(u) — 0, the solution (79) preserves its meaning and passes
through the “divergence” point ¢(u) = 0 in a continuous manner. Evidently,
when both e(u) and ¢(u) vanish simultaneously, the already derived
expressions give the “right” answer H,4(0,0) = 2z, in spite of the order by
which e(u) and é(u) attain their zero values.

3. Conclusions

The basic goal, which we intend to do in this paper, is to compute,
by an analytical way, expressions for certain type integrals. They will be
used in the forthcoming investigations of the dynamical equation of the
elliptical accretion discs ([1], [2]). More precisely speaking, the integrands
of these functions of the eccentricity e(u) of the particle orbits, and their
derivatives é(u) = oe(u)/ou. They contain into their denominators factors (or
products of them) of the type (1 + ecosg)' or [1 + (e — é)cosg]. The powers i
and j may take integer values 1, 2, 3, 4, 5 and so on. We stress that the
considered integrals do not include into their nominators factors other than
unity. Therefore, the integers i and j are always positive. Of course, we have
limited us to a minimum set of numbers of these powers - such, which will
be enough, in view of the future applications of the analytical solutions for
these integrals. Although there is not (at least an obvious) doubt, that the
used in the present paper (essentially recurrent) approach for analytical
evaluations of the integrals Ai(e,é), Ji(e,é) and Hi(e,e), (i =1, 2, 3,...), may
be extended for arbitrary integers i, we do not solve this general problem.
That is to say, we do not try to obtain any common expressions for each of
these functions of e(u) and ¢é(u), valid for arbitrary powers i =1, 2, 3,....
This would be an extended mathematical task, which would be beyond the
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scope of our efforts to analyze a concrete physical problem — the dynamical
equation of the stationary elliptical accretion discs.

An essential peculiarity, which occurs for almost all the calculations
of the above mentioned integrals, is that in the intermediate results appear
terms, which may be divergent for some values of e(u), é(u) or the
difference e(u) — é(u). In the final expressions, representing the final
solutions of the integrals, these peculiarities may present or not present.
These indeterminacies can be overcome by means of direct substitutions of
the above noted “peculiar” meanings into the initial definitions of Ai(e,é),
Ji(e,e) and Hi(e,é), (i =1, 2, 3,...), and then performing the integration. As a
rule, this procedure is more easily fulfilled, and, fortunately, does not
involve, at any stage of the calculations, the considered type of peculiarity.
As it becomes evident, after the comparison of the two solutions, we strike
with the following two situations:

(i) The final result for the expression, obtained through the “peculiar”
intermediate terms, does not involve similar “peculiar” terms. Consequently,
it is “regular” with respect to the substitution into it of the “singular” e(u)
and é(u). It is remarkable that the two ways (with singular intermediate
terms and direct computation, without passing through such singular terms)
give identical expressions. This is, of course, a favorable property, because
there is not a necessity to point out the method, by which the considered
formula is obtained.

(if) The final result for the expression, obtained through the “peculiar”
intermediate terms, retains its indeterminacy for the considered (caused by
the divergent intermediate terms), “peculiar” values of e(u) or/and é(u).
Then, it turns out that it is possible, by the use of the L’Hospital’s rule, to
reveal these indeterminacies of the type 0/0. Again, it is worthy to note that
the evaluated in this way (by means of the limit transitions e(u) — 0, or/and
é(u) — 0) expressions coincide with those, computed through the direct
substitution of the “problem” values of e(u) and ¢é(u) into the integrals,
which we want to evaluate analytically. Such a continuous transition enables
us to use into the applications the derived formulas, without to specify the
path by which they are established. And also not to worry whether the
applications of the above computed analytical expressions for the integrals
Ai(eé), (i=1, ..., 5), Jk(e,e) and Hy(e,é), (k =1, ..., 4) do introduce any
type their own divergence into the evaluated (more complex) composite
expressions, of which they are parts.
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AHAJIMTUYHO NPECMSATAHE HA JIBA UHTEI'PAJIA,
Bb3HUKBAIIIN B TEOPUATA HA EJIMIITUYHUTE
AKPEIIMOHHMU JUCKOBE. |. PEHHIIABAHE HA
CIIOMAT'ATEJIHUTE UHTEI'PAJIA, ITOABSABAILIU CE
IIPU TAXHOTO U3YUCJISABAHE

A. lumumpoe

Pesome
Hacrosimiata pabora € 4act OT €AHO OOIIMPHO aHAJTUTHYHO
U3CJIe[BaHE Ha JUHAMHUYHOTO ypPaBHEHHUE, ONPEIESSII0 POCTPAHCTBEHATA
CTPYKTypa Ha CMayuoHapHume INUITAYHA aKPEIIMOHHH JIUCKOBE, CHIIIACHO
mozena Ha JlroOGapcku u ap. [1]. Tlpy mMaremMaTHyecKOTO ONMMCaHHWE Ha
3ajjayaTa ca W3IO0J3BaHM KaTo MapaMeTpu ekcieHpuiurera €(U) Ha
OopOMTHTE Ha YaCTUIMTE M HeroBara mpomsBogHa é(U) = de(u)/du, xkpaeTo
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u = In(p), p ¢ pokamHUAT MapaMeThp Ha pasriiexkaaHara opoura. B Teuenue
Ha T[poleca Ha  ONpPOCTABAaHE HA TOBAa ypaBHEHHE, BBH3HHUKBA
HEe00XOAUMOCTTA OT

2n

AHAJTUTUYHO OlICHSIBAHE HA MHTETPAU OT ciaeaHuTe tumnose: Aj(e,é) = J- 1+
0

+ecosp) ' dg,

(i=1,...,5), I(eé) = j(l +ecosp) "1 [1 + (e — é)cosp] X dp u Hy(e,é) =

= I(l + eCOSqo)_k [1+ (e - é)cosp] *dp, (k=1, ..., 4). B te3u popmym ¢ ¢
0

a3MMYTAJHUSAT BI'bJI, BBPXY KOWTO € U3BBPIICHO ycpeansBaHeTo. [loaxoapt
IpU pelIaBaHeTo Ha 33j1a4ara e, pakTU4ecKH, pekypcuBeH. Haii-Hanpen Hue
OLICHSIBAME MHTErPANIUTE 338 Hal-MaJKuTe CTOiHOCTH Ha | u K (T.e., 1 u K
paBHM Ha enunHuna). Cien ToBa HHE NpPEeMUHAaBaMe KbM CIIECIBAILIUTE
CTBIIKH, TOCTCIICHHO YyBEIMYaBaWKU IIEJOYUCICHUTE cTernmeHu | win K,
JOKaTO C€ JIOCTHUTHAT YyKa3aHWTe CTOWHOCTH 5 wiam 4,  CHOTBETHO.
CrnenuaiHO BHUMaHHE € MOCBETEHO Ha Te3u 3Haveus Ha e(u) u é(u) (u
TsaxHata pasznuka e(Uu) — é(U)), KOUTO EBEHTYaqHO MoraT Ja HPUYHHST
Pa3XoJMMOCTH B MPOMEXKIYTHYHHTE HIM KpaiiHuTe m3pasu. [lokaszaHo e,
BBIIPEKH BH3HUKBAHETO Ha TAaKWBA 3aTPyJHEHHMs, Y€ T€ Morar jaa Obaar
MIPEOJIOJISTHU TTOCPEICTBOM IMPSIKOTO 3aMECTBaHE Ha “0COOCHHUTE” CTOWHOCTH
Ha e(U) w/wmm é(U) B MHTErpajuTe, KaTo Yak CjeJ TOBa C€ M3BBPILNBAT
u3uncieHusara. Jlaxke ako B 3HAMEHATEJIMTE HAa KpaWHUTE pe3yTaTH ce
MOSBABAT MHOKUTEIH PaBHU Ha Hyja (B CIIEACTBHE Ha aHyJIMPaHHUITA Ha
e(u), é(u) mwmm e(u) — é(u)), u3pasure He ca Pa3xXOJAIIHA, KAKTO HHUE CMe
JIOKa3aid, M3MOJI3BalikM mpaBwioTo Ha JlpomuTan 3a paspemiaBaHe Ha
neomnpenaeneHoctd ot Buga 0/0. BcHukM  aHaIMTHYHHA OICHKH HA
rOpeHanMCcaHuTe UHTErPaj ca M3BBPUICHHU NpH orpaHudeHusTa |e(u) < 1|,
lé(u) < 1] u |e(u) — é(u)] < 1. Te ca HamoxeHH mopamu (HUIUUCCKH
ChOOpaXEeHUs, C OrJIe]l Ha PUJIATaHEeTO Ha TE3W PELICHUs BbB Bb3IIpHETAaTa
TEOPHUs Ha CIUNTUYHUTE aKPEIIHOHHU JTUCKOBE.
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