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          Abstract   
         The present work is a part of an extended analytical investigation of the dynamical 
equation, determining the spatial structure of the stationary elliptical accretion discs, 
according to the model of Lyubarskij et al. [1]. In the mathematical description of the 
problem are used as parameters the eccentricity e(u) of the particle orbits, and its 
derivative ė(u) ≡ de(u)/du ,where u ≡ ln(p), and  p is the focal parameter of the considered 
orbit. During the process of simplification of that equation, there arises  
                                                                                                                                                                                                                      2π 

the necessity of analytical evaluations of integrals of the following types: Ai(e, ė) ≡ ∫(1 + 
+ecosφ) – idφ,                                                                                                                     0 

                                                       2π
                                                                                                                             

2π    
 

(i = 1,…,5), Jk(e, ė) ≡ ∫(1 + ecosφ) – 1[1 + (e – ė)cosφ] – k dφ and Hk(e, ė) ≡ ∫(1 + ecosφ) – k × 
                                                       0                                                                                                                               0       

×[1 + (e – ė)cosφ]  – 1dφ, (k = 1,…,4). In these formulas φ is the azimuthal angle, over 
which the averaging is taken. The approach in solving of the task is, in fact, recursive. At 
first, we evaluate the integrals with the smallest i and k (i.e., i and k equal to unity). After 
then, we go to the next steps, gradually increasing the integer powers i or k, until achieving 
the designated values 5 or 4, correspondingly. A special attention is devoted to these values 
of e(u) and ė(u) (and their difference e(u) - ė(u) ), which, eventually, may cause 
divergences in the intermediate or the final expressions. It is shown that although such 
troubles arise, they can be overcome by means of a direct substitution of the “peculiar” 
values of e(u) and/or ė(u) into the integrals, and after then performing the calculations. 
Even if the denominators in the final results appear factors equal to zero (due to the 
nullifications of e(u), ė(u) or e(u) – ė(u) ), the expressions are not divergent , as we have 
proved, using the L’Hospital’s rule for resolving of indeterminacies of the type 0/0. All the 
analytical estimations of the above written integrals are performed under the restrictions 
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|e(u)| < 1, |ė(u)| <1 and |e(u) – ė(u)| < 1. They are imposed by the physical reasons, in view 
of the application of these solutions into the adopted theory of the elliptical accretion discs.   
       
 

1. Introduction   
 

We have considered some simplifications of the dynamical equation, 
governing the structure of the elliptical accretion discs in the model of 
Lyubarskij et al. [1]. The results are already published in a series of papers 
([2], [3] and [4]; see also the references therein). In the course of this work, 
we have introduced seven integrals, which are functions of the eccentricities 
e(u) of the particle orbits in the accretion disc, their derivatives  
ė(u) ≡ de(u)/du and the power n into the viscosity law η = β Σ n. Further we 
explain the use of the introduced notations. Here u is defined to be the 
logarithm of the focal parameter p of the corresponding ellipse, representing 
the considered particle orbit: u ≡ ln(p). We remind that in the considered 
model of Lyubarskij et al. [1], all elliptical trajectories in the accretion flow 
are such, that the major axes of the ellipses lie on the same line (assumed to 
be the abscissa on which lie the periastrons and apoastrons of the all 
trajectories). This simplification (introduced “by hands”) allows to derive a 
dynamical equation for the particles of the disc, which is a second order 
ordinary differential equation [1]. Such a situation is more favorable, if we 
try to apply an analytical approach for solving of this problem. The picture 
of the dynamics of the elliptical accretion discs becomes much more 
complicated in the opposite (more general) case, when the ellipses of the 
orbits have apse lines, which are not necessarily in line with each other. 
Then the dynamics of the disc is described by partial differential equations, 
as it has been shown in the investigation of Ogilvie [5]. Our working out of 
the model of Lyubarskij et al. [1] is stimulated in the first place namely by 
the above mentioned simplifying circumstance, allowing more favorable 
possibilities to solve the problem by purely analytical methods. Though the 
considered case may have less usefulness with respect to the really observed 
discs. That is to say, elliptical discs with orbits sharing a common longitude 
of the periastron are rare situations among the objects of the kind eccentric 
accretion discs. It is worth to note that while the orbital eccentricity e(u) and 
its derivative ė(u) ≡ de(u)/du are functions of the focal parameter  
p (u ≡ ln(p)), the power n does not depend on u. This means that n is a fixed 
constant through the whole disc, while the elongation of the particle orbits 
may vary for the different parts of the disc. In particular, for the outer parts 
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the periastron of the elliptical orbits may have positive (negative) values of 
the abscissa, but at the same time in the inner parts of the accretion disc, 
such values may take negative (positive) meanings, respectively. As it has 
been written above, the accepted in [1] viscosity law is η = β Σ n (where β is 
a constant). The viscosity parameter η will depend on the spatial coordinates 
r and φ (where r is the length of the radius-vector, measured from the center 
of the compact object, accreting the matter; φ is the azimuthal angle) only 
through the surface density of the disc Σ = Σ(r, φ).    
       During the process of simplification of the dynamical equation of the 
elliptical accretion discs (derived by Lyubarskij et al. [1], we have 
introduced seven auxiliary integrals, which appear because of the azimuthal-
angle averaging of the task. These integrals are functions of e(u), ė(u) and n, 
and are defined in the following manner ([2], [3] and [4]):  
                                                  2 π    

(1) I0-(e,ė,n) ≡ ∫(1 + ecosφ) n – 3[1 + (e – ė)cosφ] – (n + 1) dφ ,  
                                                   0              
                                                   2 π              
(2) I0+(e,ė,n) ≡ ∫(1 + ecosφ) n – 2[1 + (e – ė)cosφ] – (n + 2) dφ ,     
                                                    0            
                                                2 π           
(3) Ij(e,ė,n) ≡ ∫(cosφ)j(1 + ecosφ) n – 2[1 + (e – ė)cosφ] – (n + 1) dφ ;  j = 0, 1, 2, 3, 4.   
                                                 0                    

We remind here, that we consider a particular case of the elliptical 
accretion discs, developed by Lyubarskij et al. [1]: namely, stationary flows. 
Moreover, there are some additional limitations, imposed for every elliptical 
orbit in the disc, on the eccentricity e(u) and its derivative ė(u) ≡ de(u)/du. 
These are the inequalities: |e(u)| < 1, |ė(u)| < 1 and |e(u) – ė(u)| < 1, valid for 
every value u ≡ ln(p) in the disc. Mathematically viewed, these conditions 
ensure that the integrals (1) – (3) are well behaving, because the 
denominators are always strongly positive and, correspondingly, do not 
cause singularities. From a physical point of view, possible nullifications of 
the denominators in the definitions (1) – (3) might be connected with the 
emerging of shock waves in the disc, leading, in own turn, to spiral density 
waves [1]. Such phenomena a priori are not considered by this model. The 
discussed circumstance is clearly reflected in the expressions for the 
denominators of the metric tensor and the related quantities (see the 
Appendices in paper [1]).   

In the above cited earlier investigations [2], [3] and [4], we have 
interested in the establishing of the linear relations between the integrals (1) 
– (3), in order to eliminate them from the dynamical equation of the 
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accretion flow. This is in a correspondence with our approach to simplify 
analytically the equation and, eventually, to reveal its mathematical 
structure and physical implications by purely analytical manners. And only 
after that to apply, if it is unavoidable, the numerical computations. Leaving 
aside the integral I3(e,ė,n), we have shown that four of the other integrals  
(1) – (3) may be expressed through linear combinations of the integrals  
I0-(e,ė,n) and I0+(e,ė,n). So that, to proceed further, we need to investigate 
whether the last two integrals are linearly independent functions with 
respect to the variables e(u) and ė(u), or not. We remark here that the power 
n in the viscosity law η = β Σ n is a fixed quantity throughout the entire 
elliptical accretion disc. When we state that n is a parameter, entering as an 
independent variable in the list of arguments of the integrals (1) –  (3), etc., 
we subtend that we, in fact, consider a family of an infinite number of discs. 
Every with own fixed value of the power n. Saying that n varies, we bear in 
mind that such a variation of n is not over the spatial coordinates in the disc, 
but from one model to other model (with different n); i.e., n does not depend 
on u ≡ ln(p). This situation, of course, simplifies the differentiation with 
respect  to  e(u) or ė(u)  of variety  kinds  of  expressions,  like (1 + ecosφ)n,  
[1 + (e – ė)cosφ]n, etc. But there are some cases, when we need of the 
derivatives with respect to n. Then, according to the well known 
differentiating rule from the analysis d(ax)/dx = ax ln(a) (where a does not 
depend on x), as we shall see later, in the integrands of the  
considered integrals  will  appear  factors of  the  type   ln(1 + ecosφ)  and  
ln[1 + (e – ė)cosφ]. This complicates the analytical computation of the 
integrals, because we did not successfully find any expressions about them 
in the accessible for us mathematical reference books, manuals, guides and 
handbooks. The reason for differentiating with respect to the power n is  the 
following. During the process of verification of linear 
dependence/independence of the integrals I0-(e,ė,n) and I0+(e,ė,n), there 
appear terms containing into their denominators factors like (n – 1), (n – 2), 
etc., which implies suspicions of divergences, if we try to use the final 
results for some integer values of n. Of course, we are able to perform the 
evaluation of the considered expressions in a separate manner for these 
“peculiar” integer values of n and obtain nonsingular results for this special 
cases. Such a possibility is guaranteed by the form of the initial expressions 
(namely, the integrals of the type (1) – (3) and the other integrals, 
originating from them), which we try to evaluate analytically. They are 
obviously not singular for these “problematic” integer values of n. But from 
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physical reasons, there is not motivation to assume the existence of such 
“special” selection of some integer n, and we expect that the pointed out 
property to be reflected into the mathematical formulas. More strictly 
speaking, we suspect that the divergences, appearing because of the 
nullification of the denominators for some integer n, may be overcome by 
means of the L’Hospital’s rule for resolving of indeterminacies of the type 
0/0. Such an additional checking of the results for the above mentioned 
“problematic” integer values of the power n has two reasons: (i) the 
transition through these integer values of n is continuos. That is to say, the 
direct computation of the analytically evaluated integrals gives the same 
results as in the case, when the limit transition to the “problematic” integer n 
is used into the “singular” formulas. If the L’Hospital’s rule may be applied, 
of course! There are two L’Hospital’s rules: one helps us to evaluate 
indeterminacies of the type 0/0 and the other – for the type ∞/∞. In the our 
further exposition we shall use only the first theorem of L’Hospital. For this 
reason, let us formulate (in order to make things clear) the first variant of 
these rules. The proof of these statements can be found in many textbooks 
on differential calculus, and we shall not cite them in our references. 
Because the variables, which describe the accretion disc model, are real 
numbers, the formulation of the first L’Hospital’s rule will be restricted to 
this case. Let we have a point x0 (in our application, this may be a concrete 
value of e(u), ė(u), e(u) – ė(u) or n). Let be fulfilled the following 
conditions: (i) functions f(x) and g(x) are defined and continuous in some 
interval around x0; (ii) both these functions approach zero, when x 
approaches x0:  
lim f(x) = lim g(x) = 0; (iii) the derivatives f '(x) ≡ df(x)/dx and g'(x) ≡  
x → x0          x → x0   
≡ dg(x)/dx in that interval (except, may be, at the point x0) exist; (iv) these 
derivatives do not simultaneously vanish for x ≠ x0; (v) there also exists the 
limit   
lim [f '(x)/g'(x)].  
x → x0     
Then, under these circumstances, the first L’Hospital’s rule states that   
lim [f (x)/g(x)] = lim [f '(x)/g'(x)]. In what follows, when arise the need 
x → x0                      x → x0 
of application of the L’Hospital’s rule, the points (i) – (v) must be checked 
for their validity. If some of them are not obvious, we shall give a detailed 
proof of the correctness of these conditions. It may occur, that the rule has to 
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be applied several times successively, in order to be achieved the reasonable 
final result.   
       The establishing of the linear dependence/independence of the integrals 
I0-(e,ė,n) and I0+(e,ė,n) follows the standard way – computing the Wronski 
determinant and evaluation of the domains in the space of variables, where 
it is equal (or not equal) to zero. In the course of this procedure, which we 
intend to perform in a purely analytical manner, without using numerical 
methods, we arrive to the problem of the analytical solving of two integrals. 
Like the definitions (1) – (3), they are also functions of e(u), ė(u) and the 
power n:   
                                                           2 π         
(4)        I0,- 4 ,+1(e,ė,n) ≡ ∫(1 + ecosφ) n – 4[1 + (e – ė)cosφ] – (n + 1) dφ ,  
                                                            0        
                                                           2 π         
(5)        I0,- 2 ,+3(e,ė,n) ≡ ∫(1 + ecosφ) n – 2[1 + (e – ė)cosφ] – (n + 3) dφ .  
                                                            0        

The appearance of such expressions is a consequence of the 
differentiation of I0-(e,ė,n) and I0+(e,ė,n), in order to write the Wronski 
determinant. In turn, the computation of the integrals (4) and (5) requires a 
preliminary analytical evaluation of some auxiliary integrals, also functions 
of e(u), ė(u) and n. We divide them into two groups, whether their 
integrands include (or not include) as factors the logarithms  
ln(1 + ecosφ) and ln[1 + (e – ė)cosφ].   
 
 2. Analytical computation of the auxiliary integrals, which do not 
contain logarithmic functions    
                                                                                                                                                                      2 π        

2.1. Evaluation of integrals of the type Ai(e,ė) ≡ ∫[1 + (e – ė)cosφ] – i dφ   
                                                                                                                                                                       0     
 In the present subsection we calculate integrals with integrands 
which are negative integer powers of the expression [1 + (e – ė)cosφ]. As 
already mentioned above, we investigate the model of elliptical accretion 
discs of Lyubarskij et al. [1] under three restrictions, imposed a priori on the 
eccentricity e = e(u), its derivative ė(u) ≡ de(u)/du and the difference  
e(u) – ė(u).They must be fulfilled for all parts of the accretion flow, i.e., for 
all u ≡ ln(p). Particularly, | e(u) – ė(u)| < 1, which ensure that  
[1 + (e – ė)cosφ] never vanishes for all values of the azimuthal angle  
φ (0 ≤ φ ≤ 2π). With this remark, we are able to evaluate, without any 
complications, the integrals Ai(e,ė), defined through the relation:  
 



 11 

                        2 π        
(6)          Ai(e,ė) ≡ ∫[1 + (e – ė)cosφ] – i dφ ,    i – non-negative integer.     
                                             0     
Actually, we shall need  of analytical expressions for Ai(e,ė), when i =  1, 2, 
3, 4 and 5. Note that these functions do not depend on the power n! 
According to formulas 858.525 and 858.535 from the tables of Dwight [6], 
we are able immediately to give the analytical expressions for A1(e,ė) and 
A2(e,ė), respectively:   
                                             2 π        
(7)          A1(e,ė) ≡ ∫[1 + (e – ė)cosφ] – 1 dφ = 2π [1 – (e – ė)2] – 1/ 2 ,    
                                              0     
                                             2 π        
(8)          A2(e,ė) ≡ ∫[1 + (e – ė)cosφ] – 2 dφ = 2π [1 – (e – ė)2] – 3/ 2 .               
                                              0       

Further we observe that for a fixed value n = 3, the integral I0-(e,ė,n=  
= 3) coincides with the function A4(e,ė) (see the definition (1) for I0-(e,ė,n)):   
 

                                              2 π        
(9)          A4(e,ė) ≡ ∫[1 + (e – ė)cosφ] – 4 dφ ≡ I0-(e,ė,n = 3) =  
                                               0     

                        = π[2 + 3(e – ė)2] [1 – (e – ė)2] – 7/ 2 .  
  

The later equality in the above relation follows from formula (6h) 
from paper [7], where we have already given the analytical solutions of the 
integrals (1) – (3) for integer values of the power n (n = – 1, 0, 1, 2, 3). The 
evaluation of the auxiliary integral A3(e,ė) requires some additional efforts:   
                                            2 π                                                          2 π            
(10)       A3(e,ė) ≡ ∫[1 + (e – ė)cosφ] – 3 dφ = ∫{[1 + (e – ė)cosφ] – (e – ė)cosφ}× 
                             0                                                             0                      
                                                                                     2 π          

              ×[1 + (e – ė)cosφ] – 3 dφ = ∫[1 + (e – ė)cosφ] – 2 dφ –  
                                                                                      0          
                                        2 π      
              – (e – ė)∫cosφ[1 + (e – ė)cosφ] – 3 dφ = 2π [1 – (e – ė)2] – 3/ 2 –  
                                          0               
                                        2 π          
              – (e – ė)∫cosφ[1 + (e – ė)cosφ] – 3 dφ ,  
                                         0                
where we have used the mentioned above result (8). To evaluate further the 
right-hand side of the equality (10), we integrate by parts:   
                                                                                                                   2 π           
(11)       A3(e,ė) = 2π [1 – (e – ė)2] – 3/ 2 – (e – ė)∫[1 + (e – ė)cosφ] – 3 d(sinφ) =   
                                                                                                                   0        
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                                                                                                   2 π            

              = 2π [1 – (e – ė)2] – 3/ 2 + 3(e – ė)∫(1 – cos2φ)[1 + (e – ė)cosφ] – 4 dφ =   
                                                                                                    0             
                                                                                                     2 π                
              = 2π [1 – (e – ė)2] – 3/ 2 + 3(e – ė)2∫[1 + (e – ė)cosφ] – 4 dφ +   
                                                                                                       0             
                            2 π                
              + 3∫{[1 – (e – ė)2cos2φ] – 1}[1 + (e – ė)cosφ] – 4 dφ = 2π [1 – (e – ė)2] – 3/ 2 +  
                             0        
                                                                         2 π              
              + 3(e – ė)2A4(e,ė) + 3∫[1 – (e – ė)cosφ][1 + (e – ė)cosφ] – 3 dφ –  
                                                                          0             
                            2 π               
              – 3∫[1 + (e – ė)cosφ] – 4 dφ = 2π [1 – (e – ė)2] – 3/ 2 + 3(e – ė)2A4(e,ė) + 3A3(e,ė) –  
                             0       
                                            2 π         

              – 3(e – ė)∫cosφ[1 + (e – ė)cosφ] – 3 dφ – 3A4(e,ė) .    
                                             0               
           Consequently, we have about the unknown function A3(e,ė) that: 
  
(12)       – 2A3(e,ė) = 2π [1 – (e – ė)2] – 3/ 2 + 3[(e – ė)2 – 1]A4(e,ė) –   
 

                                            2 π 

              – 3(e – ė)∫cosφ[1 + (e – ė)cosφ] – 3 dφ .   
                                             0      
       We can again use the equality (10), but now to write it into a form more 
appropriate for comparison with (12):  
                                                                                                                                  2 π          
(13)       – 2A3(e,ė) = – 4π [1 – (e – ė)2] – 3/ 2 + 2(e – ė)∫cosφ[1 + (e – ė)cosφ] – 3 dφ .   
                                                                                                                                   0     
 Equating of the right-hand-sides of (12) and (13) enables us to 
compute the unknown integral. Strictly speaking, this is the integral  
I1(e,ė,n = 2) (see the definition (3) for j = 1 and n = 2):    
  
                                       2 π          
(14)       5(e – ė)∫cosφ[1 + (e – ė)cosφ] – 3 dφ ≡ 5(e – ė)I1(e,ė,n = 2) =  
                                        0      
              = 6π [1 – (e – ė)2] – 3/ 2 – 3[1 – (e – ė)2]A4(e,ė) .    
 

 Dividing this result by ( – 5) and replacing it into the right side of the 
relation (10), we obtain the expression for the unknown function A3(e,ė):   
 

(15)       A3(e,ė) = 2π [1 – (e – ė)2] – 3/ 2 – (6π/5)[1 – (e – ė)2] – 3/ 2 +  
              + (3π/5)[1 – (e – ė)2][2 + 3(e – ė)2][1 – (e – ė)2] – 7/ 2 ,  
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where we have applied the already computed expression (9) for A4(e,ė). 
Finally:   
                                            2 π  
(16)       A3(e,ė) ≡ ∫[1 + (e – ė)cosφ] – 3 dφ = (4π/5)[1 – (e – ė)2] – 3/ 2 +  
                                             0                   
              + (3π/5)[2 + 3(e – ė)2][1 – (e – ė)2] – 5/ 2 ≡ (π/5)[10 + 5(e – ė)2][1 – (e – ė)2] – 5/ 2 ≡  

              ≡ π[2 + (e – ė)2][1 – (e – ė)2] – 5/ 2 .  
 

 Of course, we are able to use the equation (14) for obtaining the 
analytical solution of the integral I1(e,ė,n = 2):   
                                                        2 π            
(17)       I1(e,ė,n = 2) ≡ ∫cosφ[1 + (e – ė)cosφ] – 3 dφ = [5(e – ė)] – 1{6π[1 – (e – ė)2] – 3/ 2 –  
                                                        0      
              – 3π[1 – (e – ė)2][ 2 + 3(e – ė)2][1 – (e – ė)2] – 7/ 2 = – 3π(e – ė)[ 1 – (e – ė)2] – 5/ 2.  

 This is already derived expression (paper [7], formula (5b)). We 
rewrite it only to underline the consistency of our computation with the 
earlier evaluations. Let us now set about the analytical computation of the 
integral A5(e,ė). We shall proceed in the following manner: we begin with a 
transformation of the already evaluated integral A4(e,ė), which leads to an 
integration by parts. The later operation will require differentiation with 
respect to φ (φ is the azimuthal angle, which in our case is the integration 
variable) of the quantity [1 + (e – ė)cosφ] – 4. As a consequence, in the 
integrand of the one of the terms appears the factor [1 + (e – ė)cosφ] – 5, 
generating, as the final result, the integral A5(e,ė), which we are seeking for.   
                                            2 π                                                          2 π                 

(18)       A4(e,ė) ≡ ∫[1 + (e – ė)cosφ] – 4 dφ = ∫[1 + (e – ė)cosφ][1 + (e – ė)cosφ] – 4dφ –  
                                             0                                                             0                 
                                    2 π                                                                      2 π                    
           – (e – ė)∫[1 + (e – ė)cosφ] – 4 d(sinφ) = ∫[1 + (e – ė)cosφ] – 3 dφ –  
                                     0                                                                         0                        
                                                                                                   │2 π                           2 π                      
           – (e – ė){sinφ[1 + (e – ė)cosφ] – 4│    –  4(e – ė) ∫sin2φ[1 + (e – ė)cosφ] – 5 dφ} =  
                                                                                                   │0                               0               
                                                                  2 π                    
           = A3(e,ė) + 4(e – ė)2∫(1 – cos2φ)[1 + (e – ė)cosφ] – 5 dφ = A3(e,ė) +  
                                                                   0            
                                2 π                                                              2 π                     
     + 4(e – ė)2∫[1 + (e – ė)cosφ] – 5 dφ + 4∫{[1 – (e – ė)2cos2φ] – 1}[1 + (e – ė)cosφ] – 5 dφ = 
                                 0                                                                 0          
                                                                             2 π              
  = A3(e,ė) + 4(e – ė)2A5(e,ė) + 4∫[1 – (e – ė)cosφ][1 + (e – ė)cosφ][1 + (e – ė)cosφ] – 5 dφ – 
                                                                                0              
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                            2 π                    

              – 4∫[1 + (e – ė)cosφ] – 5 dφ = A3(e,ė) – 4[1 – (e – ė)2]A5(e,ė) + 4A4(e,ė) –   
                              0             
                             2 π             

              – 4∫{[1 + (e – ė)cosφ] –1}[1 + (e – ė)cosφ] – 4 dφ = A3(e,ė) + 4A4(e,ė) –  
                             0                            
              – 4[1 – (e – ė)2]A5(e,ė) – 4A3(e,ė) + 4A4(e,ė) =  
              = – 3A3(e,ė) + 8A4(e,ė) – 4[1 – (e – ė)2]A5(e,ė) .   
    
 The above result enables us to express A5(e,ė) by means of A3(e,ė) 
and A4(e,ė), and applying the relations (15) and (9), respectively, to write 
the final form for this integral:  
                                            2 π                                                            
(19)       A5(e,ė) ≡ ∫[1 + (e – ė)cosφ] – 5 dφ = {4[1 – (e – ė)2]}– 1[– 3A3(e,ė) + 7A4(e,ė)] =  
                                             0                   
           = {4[1 – (e – ė)2]}– 1{– 3π[2 + (e – ė)2][1 – (e – ė)2] – 5/ 2 +  
           + 7π[2 + 3(e – ė)2][1 – (e – ė)2] – 7/ 2} = (π/4)[1 – (e – ė)2] – 9/ 2[8 + 24(e – ė)2 +  
           + 3(e – ė)4] ≡  
           ≡ (π/4)(8 + 24e2 +3e4 – 48eė – 12e3ė + 24ė2 + 18e2ė2 – 12eė3 + 3ė4)[1 – (e – ė)2] – 9/ 2.  
 

 With a view to a further use, we also write the expressions for the 
integrals Ai(e,ė), (i = 1,…, 5), when ė(u) = 0. Geometrically, this situation 
corresponds to the case, when all particles have orbits with some (constant) 
eccentricity throughout the considered accretion disc. According to the 
formulas (7), (8), (16), (9) and (19), we have, respectively:   
 

                                             2 π        
(20)       A1(e,0) ≡ ∫(1 + ecosφ) – 1 dφ = 2π (1 – e2) – 1/ 2 ,    
                                             0     

                                            2 π        

(21)       A2(e,0) ≡ ∫(1 + ecosφ) – 2 dφ = 2π (1 – e2) – 3/ 2 ,             
                                             0       

                                            2 π  

(22)       A3(e,0) ≡ ∫(1 + ecosφ) – 3 dφ = π(2 + e2)(1 – e2) – 5/ 2 ,   
                                             0               

                                             2 π        

(23)        A4(e,0) ≡ ∫(1 + ecosφ) – 4 dφ = π(2 + 3e2)(1 – e2) – 7/ 2 ,    
                                               0   

                                            2 π                                                            

(24)       A5(e,0) ≡ ∫(1 + ecosφ) – 5 dφ = (π/4)(8 + 24e2 +3e4)(1 – e2) – 9/ 2 .  
                                             0               



 15 

            2.2. Evaluation of integrals of the type  
                                          2 π                    
             Ji(e,ė) ≡ ∫(1 + ecosφ) – 1[1 + (e – ė)cosφ] – i dφ     
                                            0                       
 The noteworthy for these integrals, which are also functions only of 
the variables e(u) and ė(u), is that their denominators are products of the 
multipliers (1 + ecosφ) and [1 + (e – ė)cosφ]. The first of them always 
presents in the denominator in power one, while the later is risen to a power 
i. We shall be interested in values of i equal to 1, 2, 3 and 4.  
                                           2 π                                                                                          2 π                    
(25)       J1(e,ė) ≡ ∫(1 + ecosφ) – 1[1 + (e – ė)cosφ] – 1dφ = ∫[(1 + ecosφ) – ecosφ] ×   
                                           0                                                                                              0               

                                                                                                                       2 π                                      
              × (1 + ecosφ) – 1[1 + (e – ė)cosφ] – 1dφ = ∫[(1 + (e – ė)cosφ] – 1dφ –  
                                                                                                                         0                     

                                                2 π                             
– [e/(e – ė)]∫{[1 + (e – ė)cosφ)] – 1}(1 + ecosφ) – 1[1 + (e – ė)cosφ] – 1dφ =  

                                                 0                                        

 

                                                                                                       2 π                         

              = 2π[1 – (e – ė)2] – 1/ 2 – [e/(e – ė)]∫(1 + ecosφ) – 1dφ +  
                                                                                                        0               

                                                 2 π                         
              + [e/(e – ė)]∫(1 + ecosφ) – 1[1 + (e – ė)cosφ] – 1dφ =   
                                                   0                        
              = 2π[1 – (e – ė)2] – 1/ 2 – 2π[e/(e – ė)](1 – e2) – 1/ 2 + [e/(e – ė)]J1(e,ė).  
 

 Here we have used formula 858.525 from Dwight [6], which, in turn, 
implies the relations (7) and (20), applied above. Consequently, equation 
(25) gives that:   
 

(26)       {1 – [e/(e – ė)]}J1(e,ė) ≡ [– ė/(e – ė)]J1(e,ė) =  
              = 2π[1 – (e – ė)2] – 1/ 2 – 2π[e/(e – ė)](1 – e2) – 1/ 2.   
 

 After multiplication by [– (e – ė)/ė], we obtain the following result 
for the integral J1(e,ė):   
                                           2 π                           
(27)       J1(e,ė) ≡ ∫(1 + ecosφ) – 1[1 + (e – ė)cosφ] – 1 dφ =  
                                           0                
             = (2π/ė){e(1 – e2) – 1/ 2 – (e – ė)[1 – (e – ė)2] – 1/ 2}.   
 

           Two circumstances must be pointed out, concerning the validity of 
this formula:  
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       (i)We have supposed that (e – ė) ≠ 0. If it is not the case, then from the 
definition (25) it follows that J1(e,ė = e) = A1(e,0) = 2π(1 – e2) – 1/ 2 (see the 
solution (20)). But for e(u) = ė(u), equation (27) gives the same result, i.e., it 
is valid also for the case e(u) – ė(u) = 0, and the limitation e(u) – ė(u) ≠ 0 
makes no sense.  
       (ii) In the relation (27) ė(u) must not be equal to zero. Of course, if we 
directly set into the definition (25) ė(u) = 0, we easily find that:  
 

                                                    2 π                           
(28)       J1(e,ė = 0) ≡ ∫(1 + ecosφ) – 2 dφ = A2(e,0) = 2π (1 – e2) – 3/ 2,   
                                                     0              
           From the other hand, we have the availability to apply in (27) the 
L’Hospital’s rule, in order to evaluate the right-hand-side of this expression, 
when ė(u) approaches zero. In particular, it is fulfilled the condition:  
 

(29)       lim {e(1 – e2) – 1/ 2 – (e – ė)[1 – (e – ė)2] – 1/ 2} = 0.  
             ė(u) → 0     
    
            Further, computation of the derivative with respect to ė of the 
difference into the curly brackets gives (after taking the limit ė → 0):   
 

(30)       lim ∂/∂ė{e(1 – e2) – 1/ 2 – (e – ė)[1 – (e – ė)2] – 1/ 2}=    
              ė(u) → 0      
              = lim {[1 – (e – ė)2] – 1/ 2 + (e – ė)2[1 – (e – ė)2] – 3/ 2} = (1 – e2) – 3/ 2.    
                 ė(u) → 0     
  
           Consequently, the above result (30) implies that the L’Hospital’s 
rule, when applied to (27), leads to the same result (28), derived by a direct 
substitution ė(u) = 0 into the original formula for the integral J1(e,ė). In that 
sense, we shall use the expression  (27) without checking whether ė(u) ≠ 0 
or not, having in mind that the L’Hospital’s rule ensures a continuous 
transition through the point ė(u) = 0.  
 
                                           2 π                                                                                            2 π                 
(31)       J2(e,ė) ≡ ∫(1 + ecosφ) – 1[1 + (e – ė)cosφ] – 2 dφ = ∫[(1 + ecosφ) – ecosφ]×  
                                            0                                                                                               0                  

                                                                                                                        2 π                

              ×(1 + ecosφ) – 1[1 + (e – ė)cosφ] – 2 dφ = ∫[1 + (e – ė)cosφ] – 2 dφ –  
                                                                                                                         0                   
                                                 2 π                       

              – [e/(e – ė)]∫{[1 + (e – ė)cosφ)] – 1}(1 + ecosφ) – 1[1 + (e – ė)cosφ] – 2 dφ =    
                                                   0                    
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                                                                                                        2 π                          
              = 2π[1 – (e – ė)2] – 3/ 2 – [e/(e – ė)]∫(1 + ecosφ) – 1[1 + (e – ė)cosφ] – 1 dφ +    
                                                                                                         0                        
                                                  2 π                       
              + [e/(e – ė)]∫(1 + ecosφ) – 1[1 + (e – ė)cosφ] – 2 dφ =  
                                                   0                        
              = 2π[1 – (e – ė)2] – 3/ 2 – [e/(e – ė)]J1(e,ė) + [e/(e – ė)]J2(e,ė).  
 

           Here we again have used formula 858.535 from Dwight [6] (see also 
the expression (8) for A2(e,ė) above) and the definition (25) for the integral 
(25). The equation (31) enables us to write an explicit form for J2(e,ė):   
 

(32) – [ė/(e – ė)]J2(e,ė) = 2π[1 – (e – ė)2] – 3/ 2 – [e/(e – ė)]J1(e,ė),  
 

or, after dividing by [– ė/(e – ė)] (under the condition ė(u) ≠ 0), we obtain:  
 

(33) J2(e,ė) = – 2π [(e – ė)/ė] [1 – (e – ė)2] – 3/ 2 + (e/ė)J1(e,ė).    
 

           We are in a position to apply the result (27) for the integral J1(e,ė), 
having in mind the two remarks, which we have already done about the 
cases e(u) – ė(u) = 0 and ė(u) = 0:  
                                          2 π                           
(34)       J2(e,ė) ≡ ∫(1 + ecosφ) – 1[1 + (e – ė)cosφ] – 2 dφ = – 2π [(e – ė)/ė] [1 – (e – ė)2] – 3/ 2– 
                                            0                   
              – 2π [e(e – ė)/ė2] [1 – (e – ė)2] – 1/ 2 + 2π(e2/ė2)(1 – e2) – 1/ 2 ≡  
              ≡ – 2π(e – ė)ė – 2[1 – (e – ė)2] – 3/ 2(e – e3 + ė + 2e2ė – eė2) + 2π(e2/ė2)(1 – e2) – 1/ 2.  
 

           Like the case, considering the integral J1(e,ė), we again strike with 
the problem of the applicability of the expression (34) in the general 
situation. Namely, when e(u) – ė(u) = 0 and /or ė(u) = 0.  
       (i) If the supposition e(u) – ė(u) ≠ 0 is not valid, then from the definition  
(31) for the integral J2(e,ė) it directly follows that J2(e,ė = e) = A1(e,0) = 2π 
(1 – e2) – 1/ 2 (see (20)). It is evident that for e(u) = ė(u), the expression (34) 
gives the same result. Although, during the derivation of (34), it was 
supposed that e(u) – ė(u) ≠ 0, in the final result about J2(e,ė) this limitation 
is not leading to any singular effects.  
       (ii) Also, in the relation (34) ė(u) must not vanish. To avoid this 
constraint, we may directly set ė(u) = 0 in the definition (31). The integral is 
not singular and is already evaluated. Concretely:  
                                                    2 π                             
(35)       J2(e,ė = 0) ≡ ∫(1 + ecosφ) – 3 dφ ≡ A3(e,0) = π(2 + e2)(1 – e2) – 5/ 2.                               
                                                     0                       
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           We, of course, are able to ask whether the limit transition ė(u) → 0 in 
the formula (34) will make sense, giving the above result (35). The 
supposition can be checked by applying two times of the L’Hospital’s 
rule/theorem. To do the proof in a more compact manner, let us rewrite the 
final result (34) into the following form:  
 

(36) J2(e,ė) = 2πė – 2(1 – e2) – 1/ 2B(e,ė),  
 

where the function B(e,ė), according to (34), is defined as:   
 

(37)       B(e,ė) ≡ [1 – (e – ė)2] – 3/ 2{e2[1 – (e – ė)2] 3/ 2 + (– e2 + e4 – 3e3ė + ė2 +  
             + 3e2ė2 – eė3)(1 – e2)1/ 2}.  
 

           It is easily seen that B(e,ė = 0) = 0. The other conditions, needed for 
the applicability of the L’Hospital’s rule with respect to the relations (34) 
and (36), when ė(u) → 0, are obviously fulfilled. The first partial derivative 
of B(e,ė) with respect to the variable ė(u) is:  
 

(38)       ∂B(e,ė)/∂ė = (1 – e2) 1/ 2[ 1 – (e – ė)2] – 5/ 2ė(2 + e2 – 2eė + ė2) ≡  
              ≡ (1 – e2) 1/ 2[ 1 – (e – ė)2] – 5/ 2ė[2 + (e – ė)2].    
 

           Obviously, the partial derivative ∂B(e,ė)/∂ė vanishes for ė(u) = 0. We 
again see that the partial derivative with respect to ė(u) of the denominator 
in (36) is 2ė(1 – e2) and also vanishes for ė(u) = 0. Nevertheless, the last 
circumstance does not cause troubles, when the transition ė(u) → 0 is 
performed. The availability of the factor ė(u) both in the dominator and the 
denominator enables us to cancel out it, and the expression becomes free 
from the singularity at ė(u) = 0. In such a way, the needed condition (v) in 
the formulation of the L’Hospital’s theorem (given in chapter 2.1. above) is 
successfully fulfilled, and the transition ė(u) → 0 does not generate a 
singularity. Therefore:  
  
(39)       J2(e,ė = 0) = lim{2π[∂B(e,ė)/∂ė]/∂[ė2(1 – e2) 1/ 2]/∂ė} =   
                                  ė(u) → 0      
              = lim [2π(1 – e2) 1/ 2ė(2 + e2 – 2eė + ė2)]/{[2ė[ 1 – (e – ė)2] 5/ 2(1 – e2) 1/ 2} =  
                 ė(u) → 0      
              = π(2 + e2)(1 – e2) – 5/ 2.   
 

            This result is the same as the relation (35), where is used a direct 
method for computation of the case ė(u) = 0, without the application of any 
continuum transitions to this special point ė(u) = 0. Consequently, we are 
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able to use the formula (34) also for values ė(u) = 0, keeping in mind that 
the singularity may be overcome by means of the L’Hospital’s rule.   
                                           2 π                                                                                            2 π                           
(40)       J3(e,ė) ≡ ∫(1 + ecosφ) – 1[1 + (e – ė)cosφ] – 3 dφ = ∫[(1 + ecosφ) – ecosφ]×  
                                            0                                                                                               0                     
                                                                                                                        2 π                                                           
              ×(1 + ecosφ) – 1[1 + (e – ė)cosφ] – 3 dφ = ∫[1 + (e – ė)cosφ] – 3 dφ –  
                                                                                                                         0             
                                                 2 π                      
              – [e/(e – ė)]∫{[1 + (e – ė)cosφ] – 1}(1 + ecosφ) – 1[1 + (e – ė)cosφ] – 3 dφ =  
                                                  0                                       
                                                                           2 π                     
              =  A3(e,ė) – [e/(e – ė)]∫(1 + ecosφ) – 1[1 + (e – ė)cosφ] – 2 dφ +  
                                                                            0              
                                                 2 π                        
              + [e/(e – ė)]∫(1 + ecosφ) – 1[1 + (e – ė)cosφ] – 3 dφ =  
                                                   0                         
              = A3(e,ė) – [e/(e – ė)]J2(e,ė) + [e/(e – ė)]J3(e,ė).  
 

           Transferring the unknown function J3(e,ė) into the left-hand-side, we 
obtain:  
 

(41) [1 – e/(e – ė)]J3(e,ė) ≡ – [ė/(e – ė)]J3(e,ė) = A3(e,ė) – [e/(e – ė)]J2(e,ė).  
 

            During the present derivation, we are supposing that both ė(u) ≠ 0 
and e(u) – ė(u) ≠ 0. In agreement with this suggestion, we rewrite the above 
relation as:   
 

(42)       J3(e,ė) = – [(e – ė)/ė]A3(e,ė) +(e/ė)J2(e,ė) = – π(e – ė)[2 + (e – ė)2]ė – 1× 
              ×[1 – (e – ė)2] – 5/ 2 – 2πe(e – ė)(e – e3 + 2e2ė – eė2)ė – 3[1 – (e – ė)2] – 3/ 2 +  
              + 2πe3ė – 3(1 – e2) – 1/ 2 =  
              = – π(e – ė)ė – 3[1 – (e – ė)2] – 5/ 2(2e2 – 4e4 + 2e6 + 2eė + 6e3ė – 8e5ė + 2ė2 + e2ė2 + 
              +12e4ė2 – 4eė3 – 8e3ė3 + ė4 + 2e2ė4) + 2πe3ė – 3(1 – e2) – 1/ 2.    
 

           We again strike with the problem concerning the validity of the 
expression (42). If  we  set into  the  definition  (40)  e(u) = ė(u) (i.e., e(u) – 
– ė(u) = 0), the direct computation of the integral J3(e,ė = e) leads to the 
following simple result (taking into account the equality (20)):   
                                                    2 π                    
(43)       J3(e,ė = e) ≡ ∫(1 + ecosφ) – 1 dφ = A1(e,0) = 2π (1 – e2) – 1/ 2 .   
                                                     0             

            The same answer gives equation (42), if the equality e(u) – ė(u) = 0 
is set into it. Therefore, the established analytical evaluation (42) for the 
integral J3(e,ė) may be used also in the case when e(u) – ė(u) = 0. This 
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reasoning remains valid even if e(u) = ė(u) = 0, under the condition that 
e3(u) and ė3(u)  are  preliminary cancelled  out  in the  last term  2πe3ė – 3(1 – 
– e2) – 1/ 2 of the expression (42). Then the result is trivial: J3(0,0) = 2π. Like 
the previous two cases about the integrals J1(e,ė) and J2(e,ė), the special 
case ė(u) = 0 can be resolved by means of a direct substitution of this 
constraint into the definition of the integral J3(e,ė = 0):   
                                                    2 π                    
(44)       J3(e,ė = 0) ≡ ∫(1 + ecosφ) – 4 dφ = A4(e,0) = π (2 + 3e2)(1 – e2) – 7/ 2 .   
                                                     0             

           Here we have applied the evaluation (23) of the function A4(e,0). It 
may be checked, that in the limit ė(u) → 0,  the expression (42) gives a 
result that coincides with the last term of the equality (43). For this purpose, 
the L’Hospital’s rule must be come into use again. We shall not perform 
these tedious calculations in the present paper, which are essentially of the 
same character, as in the cases of the integrals J1(e,ė) and J2(e,ė), considered 
under the transition ė(u) → 0. We shall only mention, that such a transition 
gives a continuous result, when is applied to the relation (42). The same 
approach will be put into use under the computation of the integral J4(e,ė), 
to which we are now going on.  
                                           2 π                                                                                            2 π                           
(45)       J4(e,ė) ≡ ∫(1 + ecosφ) – 1[1 + (e – ė)cosφ] – 4 dφ = ∫[(1 + ecosφ) – ecosφ]×  
                                            0                                                                                               0             

                                                                                                                      2 π                                                           
             ×(1 + ecosφ) – 1[1 + (e – ė)cosφ] – 4 dφ = ∫[1 + (e – ė)cosφ] – 4 dφ –  
                                                                                                                       0             
                                                  2 π                      
              – [e/(e – ė)]∫{[1 + (e – ė)cosφ] – 1}(1 + ecosφ) – 1[1 + (e – ė)cosφ] – 4 dφ =  
                                                  0                                      

 

                                                                           2 π                     
              =  A4(e,ė) – [e/(e – ė)]∫(1 + ecosφ) – 1[1 + (e – ė)cosφ] – 3 dφ +  
                                                                            0        

       
                                                 2 π                        
              + [e/(e – ė)]∫(1 + ecosφ) – 1[1 + (e – ė)cosφ] – 4 dφ =  
                                                   0                         
              = A4(e,ė) – [e/(e – ė)]J3(e,ė) + [e/(e – ė)]J4(e,ė).  
 

            We have applied above the definitions (9), (40) and the first 
equality/identity in (45). Supposing that both ė(u) ≠ 0 and e(u) – ė(u) ≠ 0, 
we proceed further to evaluate the integral J4(e,ė) through the already 
computed functions of e(u) and ė(u) A4(e,ė) and J3(e,ė):   
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(46) [1 – e/(e – ė)]J4(e,ė) ≡ – [ė/(e – ė)]J4(e,ė) = A4(e,ė) – [e/(e – ė)]J3(e,ė).  
 

            Consequently, on the basis of the relations (9) for A4(e,ė) and (42) 
for J3(e,ė), we obtain the final expression for J4(e,ė) in an explicit form in 
terms of e(u) and ė(u):  
                                     2 π                    
(47)   J4(e,ė) ≡ ∫(1 + ecosφ) – 1[1 + (e – ė)cosφ] – 4 dφ = – [(e – ė)/ė]A4(e,ė) + (e/ė)J3(e,ė) = 
                                     0                     
       = – (e – ė)[2 + 3(e – ė)2]ė – 1[1 – (e – ė)2] – 7/ 2 – πe(e – ė)( 2e2 – 4e4 + 2e6 + 2eė +  
       + 6e3ė – 8e5ė + 2ė2 + e2ė2 +12e4ė2 – 4eė3 – 8e3ė3 + ė4 + 2e2ė4)ė – 4[1 – (e – ė)2] – 5/ 2 +  
       + 2πe4ė – 4(1 – e2) – 1/ 2 ≡  
       ≡ π(– 2e4 + 6e6 – 6e8 + 2e10 –14e5ė + 28e7ė – 14e9ė + 7e4ė2 – 49e6ė2 + 42e8ė2 +  
       + 35e5ė3 –70e7ė3 + 2ė4 + 8e2ė4 + 70e6ė4 – 10eė5 – 14e3ė5 – 42e5ė5 + 3ė6 + 7e2ė6 +   
       +14e4ė6 – eė7 – 2e3ė7) + 2πe4ė – 4(1 – e2) – 1/ 2.  
 

            Although the above expression is derived under the restriction e(u) – 
– ė(u) ≠ 0, it makes sense even if e(u) – ė(u) = 0. In the last case, the relation 
(47) shows that:  
 

(48)   J4(e,ė = e) = 2πe4ė – 4(1 – e2) – 1/ 2 = 2π(1 – e2) – 1/ 2,  
 

because, obviously, the first two terms in the right-hand-side  are equal to 
zero for e(u) – ė(u) = 0, and remains only the last term, where e(u)/ė(u) = 1. 
Of course, the integral J4(e,ė = e) may be directly computed by setting  
e(u) = ė(u) into its definition (45): 
                                                    2 π               
(49)       J4(e,ė = e) ≡ ∫(1 + ecosφ) – 1 dφ = A1(e,0) = 2π(1 – e2) – 1/ 2 ,   
                                                     0              
where we have again used the relation (20). The two expressions (48) and 
(49) coincide, and, therefore, the restriction e(u) – ė(u) ≠ 0 for the solution 
(47) can be removed. This conclusion continues to be valid even if  ė(u) = 0. 
Concerning the general case ė(u) = 0, the definition (45) also directly 
enables us to evaluate the wanted function J4(e,0), namely:  
                                           2 π               
(50)       J4(e,0) ≡ ∫(1 + ecosφ) – 5 dφ ≡ A5(e,0) = (π/4)(8 + 24e2 +3e4) (1 – e2) – 9/ 2,  
                                            0              
where we have applied the relation (24). It is possible to check, by means of 
the L’Hospital’s rule for revealing of indeterminacies of the type 0/0, that 
the passage to the limit ė(u) = 0 in the relation (47) leads to the same result 
(50). Consequently, such a transition through the point ė(u) = 0 is 
continuous. Further we shall apply formula (47) also when ė(u) = 0, having 
in mind that the indeterminacy is overcome preliminary through the 
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L’Hospital’s rule. Like in the previous case for the integral J4(e,ė), we shall 
skip, for  reasons  of  brevity, the proof  of  the  statement that the  transition  
ė(u) → 0 in (47) gives the same result as the relation (50).  
            In conclusion, we note that the considered number of integrals of the 
type Ji(e,ė), (i = 1, 2, 3, 4), is enough for our consequent applications. They 
will be made in the forthcoming papers (in particular, paper [8]), devoted to 
the simplification of the dynamical equation of the accretion discs with 
elliptical shapes. Summarizing some of the results in this chapter, we 
mention that for all i = 1, 2, 3 and 4 we have Ji(e,ė = 0) = Ai+1(e,ė = 0), and 
Ji(e,ė = e) = A1(e,ė = 0) = 2π(1 – e2) – 1/ 2.      
 
            2.3. Evaluation of integrals of the type  
                                             2 π                          
            Hi(e,ė) ≡ ∫(1 + ecosφ) – i[1 + (e – ė)cosφ] – 1 dφ   
                                              0                            
            These auxiliary integrals will be evaluated analytically for values of 
the power i = 1, 2, 3 and 4. Their estimates will be applied, in own turn, for 
computation of other auxiliary integrals, which will be made in subsequent 
papers. We begin with the most simple of them, namely, the integral 
H1(e,ė):   
                                            2 π                           
(51)       H1(e,ė) ≡ ∫(1 + ecosφ) – 1[1 + (e – ė)cosφ] – 1 dφ ≡ J1(e,ė) =  
                                             0                
              = (2π/ė){e(1 – e2) – 1/ 2 – (e – ė)[1 – (e – ė)2] – 1/ 2},  
 

where we rewrite formula (27) above. All remarks, whish were made about 
the validity of the estimation (27) for the integral J1(e,ė), automatically 
remain in power also for H1(e,ė). The next step is to find the integral H2(e,ė) 
as a function of its arguments e(u) and ė(u):  
                                            2 π                                                                                            2 π             
(52)       H2(e,ė) ≡ ∫(1 + ecosφ) – 2[1 + (e – ė)cosφ] – 1 dφ = ∫{[1 + (e – ė)cosφ] –   
                                             0                                                                                               0                          
                                                                                                                                                      2 π                  
              – (e – ė)cosφ}(1 + ecosφ) – 2[1 + (e – ė)cosφ] – 1 dφ = ∫(1 + ecosφ) – 2 dφ –  
                                                                                                                                                       0         
                                                  2 π                                     
              – [(e – ė)/e]∫[( 1 + ecosφ) – 1](1 + ecosφ) – 2[1 + (e – ė)cosφ] – 1 dφ =  A2(e,0) –  
                                                  0                       
                                  2 π                                                                                                                    2 π                                  
              – [(e – ė)/e]∫(1 + ecosφ) – 1[1 + (e – ė)cosφ] – 1 dφ + [(e – ė)/e]∫(1 + ecosφ) – 2× 
                                                   0                                                                                                                       0                                     
              ×[1 + (e – ė)cosφ] – 1 dφ = A2(e,0) – [(e – ė)/e]H1(e,ė) + [(e – ė)/e]H2(e,ė) =  
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              = 2π (1 – e2) – 3/ 2 – 2π(e – ė)ė – 1(1 – e2) – 1/ 2 + 2π(e – ė)2e – 1ė – 1[1 – (e – ė)2] – 1/ 2 +  
              + [(e – ė)/e]H2(e,ė),   
 

where we have applied the above already established results (21) and (51) 
A2(e,0) and H1(e,ė), respectively. Therefore, the equation (52) ensures the 
following solution for the wanted function H2(e,ė):  
 

(53)       [1 – (e – ė)/e]H2(e,ė) ≡ (ė/e)H2(e,ė) = 2π{eė[1 – (e – ė)2]1/ 2 – e(e – ė)(1 – e2)× 
              ×[1 – (e – ė)2]1/ 2 + (e – ė)2(1 – e2)3/ 2}e – 1ė – 1(1 – e2) – 3/ 2[1 – (e – ė)2] – 1/ 2.  
 

           After multiplying the both sides of this relation by e(u)/ė(u), we 
obtain the final analytical expression for the integral H2(e,ė):   
 

(54)       H2(e,ė) = 2π{(e – ė)2(1 – e2)3/ 2 + (– e2 + e4 + 2eė – e3ė)[1 – (e – ė)2]1/ 2}ė – 2×  
              ×(1 – e2) – 3/ 2[1 – (e – ė)2] – 1/ 2.  
 

            Of course, this result is derived under the assumptions that  
[e(u) ≠ 0] ∩ [ė(u) ≠ 0]. It can be rewritten also into the form:  
                                            2 π          

              
(55)       H2(e,ė) ≡ ∫(1 + ecosφ) – 2[1 + (e – ė)cosφ] – 1 dφ =  
                                              0                  
              = (2π/ė2){(e – ė)2[1 – (e – ė)2] – 1/ 2 + (– e2 + e4 + 2eė – e3ė)(1 – e2) – 3/ 2}.  
 

           Obviously, the formulas (54) and (55) have nonsingular meaning for 
e(u) = 0 (preserving the restriction ė(u) ≠ 0), namely:   
 

(56)       H2(0,ė) = (2π/ė2)[ė2(1 –  ė2) – 1/ 2 + 0] ≡ 2π(1 –  ė2) – 1/ 2.  
 

           A direct computation for the case e(u) = 0 (with ė(u) ≠ 0) for the 
integral H2(e =0,ė) shows that:  
                                             2 π                        
(57)       H2(0,ė) ≡ ∫(1 – ėcosφ) – 1 dφ = 2π(1 –  ė2) – 1/ 2,  
                                              0                       
which coincides with (56). Here we have again used formula 858.525 from 
Dwight [6]. Of course, there is not problem to apply the expressions (56) 
and (57) when ė(u) = 0. They both give the right answer H2(0,0) = 2π.  
           With respect to the general case ė(u) = 0 (when e(u) does not need to 
be equal to zero), it may be noted that the expression in the curly brackets in 
(55) approaches zero, when ė(u) also approaches zero:  
 

(58)       lim{(e – ė)2[1 – (e – ė)2] – 1/ 2 + (– e2 + e4 + 2eė – e3ė)(1 – e2) – 3/ 2} =  
              ė(u) → 0             
              = e2(1 – e2) – 1/ 2 – e2(1 – e2)( 1 – e2) – 3/ 2 = 0.  
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            It is easily verified, that the other conditions for the applicability of 
the L’Hospital’s theorem are also fulfilled. Consequently, we are in a 
position to apply the L’Hospital’s rule with regard to the right-hand-side of 
the relation (55), in order to overcome the indeterminacy of the type 0/0, 
when ė(u) = 0. In that approach, we have to evaluate the limit transition:  
 

(59)       lim ∂/∂ė{(e – ė)2[1 – (e – ė)2] – 1/ 2 + (– e2 + e4 + 2eė – e3ė)(1 – e2) – 3/ 2} =  
              ė(u) → 0      
              = lim{– 2(e – ė)[1 – (e – ė)2] – 1/ 2 – (e – ė)3[1 – (e – ė)2] – 3/ 2 +  
                  ė(u) → 0         
              + (2e – e3)(1 – e2) – 3/ 2} = – 2e(1 – e2) – 1/ 2 – e3(1 – e2) – 3/ 2 +  
              + (2e – e3)(1 – e2) – 3/ 2 = 0.  
 

The computation of the expression (55) in the limit ė(u) → 0 again strikes 
with the problem of evaluating of an indeterminacy of the type 0/0. To solve 
the task, we shall use for a second time the L’Hospital’s rule. The premises 
to do this are available. In particular, we see that:  
 

(60)       lim ∂/∂ė{– 2(e – ė)[1 – (e – ė)2] – 1/ 2 – (e – ė)3[1 – (e – ė)2] – 3/ 2 +  
              ė(u) → 0        
              + (2e – e3)(1 – e2) – 3/ 2}= lim{2[1 – (e – ė)2] – 1/ 2 + 2(e – ė)2[1 – (e – ė)2] – 3/ 2 +  
                                                      ė(u) → 0                    
              + 3(e – ė)2[1 – (e – ė)2] – 3/ 2 + 3(e – ė)4[1 – (e – ė)2] – 5/ 2} =   
              = 2(1 – e2) – 1/ 2 + 5e2(1 – e2) – 3/ 2 + 3e4(1 – e2) – 5/ 2 = (2 + e2)(1 – e2) – 5/ 2.   
 

           Consequently, the twice recurrent application of the L’Hospital’s rule 
with respect to the right-hand-side of the equation (55), leads to the 
following result, when ė(u) approaches zero value:   
 

(61)       H2(e,0) = lim{(2π/ė2){(e – ė)2[1 – (e – ė)2] – 1/ 2 +  
                              ė(u) → 0         
              + (– e2 + e4 + 2eė – e3ė)(1 – e2) – 3/ 2}} = π(2 + e2)(1 – e2) – 5/ 2.   
 

           From the other hand, the direct calculation for ė(u) = 0 leads to 
(according to the relation (22)):   
                                             2 π                
(62)       H2(e,0) ≡ ∫(1 + ecosφ) – 3 dφ ≡ A3(e,0) = π(2 + e2)(1 – e2) – 5/ 2,   
                                              0        
which coincides with the previous equality (61). In this connection, we note 
that the transition ė(u) → 0 in (54) and (55) is continuous. That is to say, 
when we use the later two formulas for ė(u) = 0, we shall subtend the 
meaning π(2 + e2)(1 – e2) – 5/ 2. Now it is trivial to evaluate H2(e,ė) when 
both e(u) = 0 and ė(u) = 0:   
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                                             2 π                
(63)       H2(0,0) ≡ ∫ dφ = 2π .   
                                              0        
            The same result follows if we set in (56) ė(u) = 0, or if we set in (61) 
e(u) = 0. This implies that there is not matter the order of the performing of 
the transitions e(u) → 0 or ė(u) → 0. The next integral, of the considered in 
the present paragraph type, is H3(e,ė) :   
                                            2 π                                                                                            2 π             
(64)       H3(e,ė) ≡ ∫(1 + ecosφ) – 3[1 + (e – ė)cosφ] – 1 dφ = ∫{[1 + (e – ė)cosφ] –   
                                             0                                                                                               0                          
                                                                                                                                                      2 π                  
              – (e – ė)cosφ}(1 + ecosφ) – 3[1 + (e – ė)cosφ] – 1 dφ = ∫(1 + ecosφ) – 3 dφ –  
                                                                                                                                                       0                 
                         

                         2 π                                     
              – [(e – ė)/e]∫[( 1 + ecosφ) – 1](1 + ecosφ) – 3[1 + (e – ė)cosφ] – 1 dφ =  A3(e,0) –  
                                                   0                       
                                                 2 π                                                                                                                    2 π                                  
              – [(e – ė)/e]∫(1 + ecosφ) – 2[1 + (e – ė)cosφ] – 1 dφ + [(e – ė)/e]∫(1 + ecosφ) – 3× 
                                                   0                                                                                                                       0                                     
              ×[1 + (e – ė)cosφ] – 1 dφ = A3(e,0) – [(e – ė)/e]H2(e,ė) + [(e – ė)/e]H3(e,ė).  

 

            After taking into account the expressions (22) and (55) for A3(e,0) 
and H2(e,ė), respectively, the unknown function H3(e,ė) may be find in an 
explicit form:  
 

(65)       [1 – (e –ė)/e]H3(e,ė) ≡ (ė/e)H3(e,ė) = π(2 + e2)(1 – e2) – 5/ 2 –  
              – 2π(e – ė)3e – 1ė – 2[1 – (e – ė)2] – 1/ 2 –  
              – 2π(e – ė)(– e2 + e4 + 2eė – e3ė)e – 1ė – 2(1 – e2) – 3/ 2.  
 

            After multiplying this equation by e(u)/ė(u) and some other 
simplifications, we obtain:  
                                            2 π             

(66)       H3(e,ė) ≡ ∫(1 + ecosφ) – 3[1 + (e – ė)cosφ] – 1 dφ = πe(2e2 – 4e4 + 2e6 – 6eė +  
                                             0                   
              + 10e3ė – 4e5ė + 6ė2 – 5e2ė2 + 2e4ė2)ė – 3(1 – e2) – 5/ 2 –  
              – 2π(e – ė)2 ė – 3[1 – (e – ė)2] – 1/ 2 ≡  
              ≡ π{(2e3 – 4e5 + 2e7 – 6e2ė + 10e4ė – 4e6ė + 6eė2 – 5e3ė2 + 2e5ė2)[1 – (e – ė)2] 1/ 2 –  

– 2(e – ė)3(1 – e2)5/ 2}ė – 3(1 – e2) – 5/ 2[1 – (e – ė)2] – 1/ 2.  
 

            It is evident from the above derivation, that the solution (66) is 
determined under the suggestion that both e(u) ≠ 0 and ė(u) ≠ 0. The first 
restriction e(u) ≠0 may be eliminated, if we note that the right-hand-side of 
(66) makes sense even if we set into it e(u) = 0, preserving the other 
condition ė(u) ≠ 0:  
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                                             2 π                      
(67)       H3(0,ė) ≡ ∫(1 – ėcosφ) – 1 dφ = 2πė3ė – 3(1 – ė2) – 1/ 2 ≡ 2π(1 – ė2) – 1/ 2.  
                                              0          
           Of course, the non-vanishing of ė(u) ensures the possibility to cancel 
out the factor ė3(u), which presents into the nominator and the denominator 
of the above quotient. The same result may be established, if we set directly 
e(u) = 0 into the definition (64)of the integral H3(e,ė), and apply the already 
known relation (20) for the integral A1(ė,0):   
                                             2 π                      
(68)       H3(0,ė) ≡ ∫(1 – ėcosφ) – 1 dφ ≡ A1(ė,0) = 2π(1 – ė2) – 1/ 2.  
                                              0          
            In this manner, we conclude that the introduced during the derivation 
of equation (66), restriction e(u) ≠ 0 is not burdensome. The final result (66) 
nevertheless gives the right answer, if we formally set into it the “peculiar” 
value e(u) = 0. A little more difficult is the problem concerning the other 
restriction ė(u) ≠ 0. To consider this case in a compact form, let us introduce 
the notation C(e,ė) about the term into the curly brackets in the relation (66):   
 

(69)       C(e,ė) ≡ (2e3 – 4e5 + 2e7 – 6e2ė + 10e4ė – 4e6ė + 6eė2 – 5e3ė2 + 2e5ė2)× 
              ×[1 – (e – ė)2] 1/ 2 – 2(e – ė)3(1 – e2)5/ 2.   
 

            Then we rewrite (66) into the following way:   
 

(70) H3(e,ė) = πC(e,ė)ė – 3(1 – e2) – 5/ 2[1 – (e – ė)2] – 1/ 2.   
 

            Temporally  we disregard the factor π(1 – e2) – 5/ 2[1 – (e – ė)2] – 1/ 2, 
which does not cause troubles for ė(u) = 0, and concentrate on the quotient 
C(e,ė)/ė3. If the later has a reasonable meaning under the limit transition 
ė(u) → 0, then the total product (70) is also defined – it is evaluated simply 
by  multiplication with  π(1 – e2) – 3. Obviously, for  ė(u) = 0, we have 
C(e,0) = 0, and the other conditions for applying of the L’Hospital’s 
theorem (when ė(u) → 0) are fulfilled too. Computation of the limit  
lim ∂C(e,ė)/∂ė gives a zero result: 
ė(u) → 0   
 

(71)       lim ∂C(e,ė)/∂ė = lim{(– 6e2 + 10e4 – 4e6 + 12eė – 10e3ė + 4e5ė)[1 – (e – ė)2] 1/ 2 + 
              ė(u) → 0            ė(u) → 0                
              + (2e3 – 4e5 + 2e7 – 6e2ė + 10e4ė – 4e6ė + 6eė2 – 5e3ė2 + 2e5ė2)(e – ė)× 
              ×[1 – (e – ė)2] – 1/ 2 + 6(e – ė)2(1 – e2) 5/ 2} = (– 6e2 + 10e4 – 4e6)(1 – e2) 1/ 2 +  
              + e(2e3 – 4e5 + 2e7)(1 – e2) – 1/ 2 + 6e2(1 – e2) 5/ 2 ≡ 0.  
  

            The derivative of the denominator with respect to ė(u) is 3ė2(u), 
which approaches zero, when ė(u) → 0. The conditions for application of 
the L’Hospital’s rule  for  computation of  lim[(1/3ė2)∂C(e,ė)/∂ė]  are again  
                                                                                  ė(u) → 0 
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available, and we have:   
                              
(72)       lim ∂2C(e,ė)/∂ė2 = lim{(12e – 10e3 + 4e5)[1 – (e – ė)2] 1/ 2 + (– 6e2 + 10e4 – 4e6 + 
              ė(u) → 0               ė(u) → 0          
              + 12eė – 10e3ė + 4e5ė)(e – ė)[1 – (e – ė)2] – 1/ 2 + (– 8e3 + 14e5 – 6e7 + 24e2ė –  
              – 30e4ė + 12e6ė – 18eė2 + 15e3ė2 – 6e5ė2)[1 – (e – ė)2] – 1/ 2 – (2e4 – 4e6 + 2e8 –  
              – 8e3ė + 14e5ė – 6e7ė + 12e2ė2 – 15e4ė2 + 6e6ė2 – 6eė3 + 5e3ė3 – 2e5ė3)(e – ė)× 
              ×[1 – (e – ė)2] – 3/ 2 – 12(e – ė)(1 – e2) 5/ 2} =  
              = lim{(12e – 48e3 + 72e5 – 48e7 +12e9 +90e2ė – 198e4ė + 156e6ė – 48e8ė – 54eė2 +  
                 ė(u) → 0 
              + 225e3ė2 – 198e5ė2 + 72e7ė2 – 132e2ė3 + 120e4ė3 – 48e6ė3 + 36eė4 – 30e3ė4 +  
              + 12e5ė4)[1 – (e – ė)2] – 3/ 2 – 12(e – ė)(1 – e2) 5/ 2} = (12e – 48e3 + 72e5 – 48e7 +  
              + 12e9 –12e + 48e3 – 72e5 + 48e7 – 12e9)(1 – e2) – 3/ 2 ≡ 0.  
 

            Now we are in a position to use the L’Hospital’s rule for a third time 
during the procedure of the evaluation of the solution (66) under the 
transition ė(u) → 0. Skipping some of the tedious intermediate algebraic 
computations, we can write:   
 

(73)       lim ∂3C(e,ė)/∂ė3 = (12e – 48e3 + 72e5 – 48e7 +12e9 )(1 – e2) – 5/ 2 + (90e2 – 198e4 + 
              ė(u) → 0 
              + 156e6 – 48e8)(1 – e2) – 3/ 2 + 12(1 – e2) 5/ 2 = 6(1 – e2)2(2 + 3e2).  
  

            This time we obtain a non-zero result, and more importantly, 
∂3(ė3)/∂ė3 = 6 ≠ 0. Having also in mind, that for the first factor in the 
expression (70) we have:  
 

(74)       lim{π(1 – e2) – 5/ 2[1 –(e – ė)2] – 1/ 2} = π(1 – e2) – 3,   
              ė(u) → 0       
                      

finally, we are able to summarize the following result:  
 

(75)       limH3(e,ė) = lim{πC(e,ė)ė – 3(1 – e2) – 5/ 2[1 –(e – ė)2] – 1/ 2}=  
              ė(u) → 0      ė(u) → 0        
              = π(2 + 3e2)( 1 – e2) – 7/ 2.    
 

            There is not a problem to evaluate directly the integral H3(e,ė) for 
the special case ė(u) = 0 without making any transition to this value into an 
expression of the type (66) (or (70), respectively), which is obtained under 
the preliminary elimination of this case. Therefore, the direct substitution 
ė(u) = 0 into the definition (66) leads to (taking into account the already 
known result (23) for A4(e,0)):   
 

                                             2 π              
(76)       H3(e,0) ≡ ∫(1 + ecosφ) – 4 dφ ≡ A4(e,0) = π(2 + 3e2)( 1 – e2) – 7/ 2.   
                                              0                  
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            The coincidence of the right-hand-side of the formulas (75) and (76) 
implies that the analytical evaluation (66) for the integral H3(e,ė) ensures a 
continuous transition through the “peculiar” value ė(u) = 0. Namely, this 
property of the analytical derivation (66) will be implicitly understood, 
when it will be used in the applications. Without specifying whether ė(u) is 
equal to zero or not. The same remark concerns the situation e(u) = 0 or  
e(u) ≠ 0, and also the combination [e(u) = 0] ∩ [e(u) ≠ 0]. In the later, all 
established above expressions give the right value H3(0,0) = 2π.  
           The next integral H4(e,ė), which we shall try to compute analytically, 
is the last in the series of integrals of the type, considered in the present 
subsection. In particular, this is stipulated by the circumstance that, in fact, 
this is the integral In-2 , n+3(e,ė,n = – 2) for the concrete value power n = – 2. 
We apply here a notation, which will be put in use in forthcoming papers, 
where we shall adopt another system of designations for the considered 
integrals. This integral H4(e,ė) participates in an explicit form into the 
Wronski determinant, establishing the linear dependence/independence 
between the integrals I0-(e,ė,n) and I0+(e,ė,n).  
                                                                                                  2 π                             
(77)       H4(e,ė) ≡ In-2 , n+3(e,ė,n = – 2) ≡ ∫(1 + ecosφ) – 4[1 + (e – ė)cosφ] – 1 dφ =  
                                                                                                   0              
                          2 π                        
              = ∫{[1 + (e – ė)cosφ] – (e – ė)cosφ}(1 + ecosφ) – 4[1 + (e – ė)cosφ] – 1 dφ =  
                          0                
                          2 π                                                                    2 π                                                
              = ∫(1 + ecosφ) – 4 dφ – [(e – ė)/e]∫[(1 + ecosφ) – 1](1 + ecosφ) – 4×  
                          0                                                                         0                                             
                                                                                                                                      2 π                                    
              ×[1 + (e – ė)cosφ] – 1 dφ = A4(e,0) – [(e – ė)/e]∫(1 + ecosφ) – 3× 
                                                                                                                                       0               
                                                                                                              2 π                                
              ×[1 + (e – ė)cosφ] – 1 dφ + [(e – ė)/e]∫(1 + ecosφ) – 4[1 + (e – ė)cosφ] – 1 dφ = 
                                                                                                               0               
              = A4(e,0) – [(e – ė)/e]H3(e,ė) + [(e – ė)/e]H4(e,ė).  
 

            Taking into account the expressions (23) and (66) for A4(e,0) and 
H3(e,ė), respectively, we are able to resolve the above equation (77) with 
respect to the unknown function H4(e,ė) of the variables e(u) and ė(u). We 
transfer H4(e,ė) into the left-hand side, and taking notice of the of the 
equality:  
 

(78) [1 – (e – ė)/e]H4(e,ė) ≡ (ė/e)H4(e,ė),    
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we write the following analytical solution:   
                                                                                                  2 π                             
(79)       H4(e,ė) ≡ In-2 , n+3(e,ė,n = – 2) ≡ ∫(1 + ecosφ) – 4[1 + (e – ė)cosφ] – 1 dφ =  
                                                                                                   0 
              = πeė2(2 + 3e2)ė – 3(1 – e2) – 7/ 2 – πė – 4(1 – e2) – 5/ 2[1 – (e – ė)2] – 1/ 2{(e – ė)(2e3 – 
              – 4e5 + 2e7 – 6e2ė + 10e4ė – 4e6ė + 6eė2 – 5e3ė2 + 2e5ė2)[1 – (e – ė)2] 1/ 2 –  
              – 2(e – ė)4(1 – e2) 5/ 2} = πė – 4(1 – e2) – 7/ 2[1 – (e – ė)2] – 1/ 2{(2eė3 + 3e3ė3)× 
              ×[1 – (e – ė)2]1/ 2 – (2e4 – 6e6 + 6e8 – 2e10 – 8e3ė + 22e5ė – 20e7ė + 6e9ė + 12e2ė2 –  
              – 27e4ė2 + 21e6ė2 – 6e8ė2 – 6eė3 + 11e3ė3 – 7e5ė3 + 2e7ė3)[1 – (e – ė)2]1/ 2 +  
              + 2(e – ė)4(1 – e2) 7/ 2} = πė – 4(1 – e2) – 7/ 2[1 – (e – ė)2] – 1/ 2{(– 2e4 + 6e6 – 6e8 +  
              + 2e10 + 8e3ė – 22e5ė + 20e7ė – 6e9ė – 12e2ė2 + 27e4ė2 – 21e6ė2 + 6e8ė2 + 8eė3 –  
              – 8e3ė3 + 7e5ė3 – 2e7ė3)[1 – (e – ė)2]1/ 2 + 2(e – ė)4(1 – e2) 7/ 2} ≡  
              ≡ πė – 4(1 – e2) – 7/ 2(– 2e4 + 6e6 – 6e8 + 2e10 + 8e3ė – 22e5ė + 20e7ė – 6e9ė – 
              – 12e2ė2 + 27e4ė2 – 21e6ė2 + 6e8ė2 + 8eė3 – 8e3ė3 + 7e5ė3 – 2e7ė3) +  
              + 2π(e – ė)4ė – 4[1 – (e – ė)2] – 1/ 2.   
 

            Like the previous computations, this solution (79) is derived under 
the assumptions [e(u) ≠ 0]∩[ė(u) ≠ 0]. But nevertheless, it has a definite 
meaning for e(u) = 0. Namely (under a preserving of the restriction ė(u)≠ 0):  
 

(80)       H4(0,ė) = 2πė4(1 – ė2) – 1/ 2ė – 4 ≡ 2π(1 – ė2) – 1/ 2.  
 

            A direct computation (by means of a direct substitution e(u) = 0 into 
the definition (77) of the integral H4(e,ė)) gives the same result as (80):  
                                             2 π                             
(81)       H4(0,ė) ≡ ∫(1 – ėcosφ) – 1 dφ ≡ A1(ė,0) = 2π(1 – ė2) – 1/ 2 ;   
                                              0            
           (see formula (20) for A1(e,0)).   
           Therefore, because the evaluation (81) does not require the avoiding 
of the value e(u) ≠ 0, we conclude that this restriction is not a factor, which 
hinders to apply formula (79) in this case. The consideration of the other 
situation ė(u) ≠ 0 requires a more complex treatment, in order to reveal the 
behaviour of the result (79) under the transition ė(u) → 0. Having in mind 
our experience with the previous such problems, we shall try to explore 
again the L’Hospital’s rule. It is appropriate to put to use the before the last 
expression in the right-hand-side of (79), because the two summands in the 
last expression of (79) do not separately satisfy the conditions (ii) and (v) 
in the formulation of the L’Hospital’s theorem. Concretely: nullification of 
the limit lim f(e,ė) and existing  
                 ė(u) → 0       
of the limit lim [f '(e,ė)/g'(e,ė)]. In view of that, we define the function  
                      ė(u) → 0 
D(e,ė) as follows:  
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(82)       D(e,ė) ≡ (– 2e4 + 6e6 – 6e8 + 2e10 + 8e3ė – 22e5ė + 20e7ė – 6e9ė – 12e2ė2 +  
              + 27e4ė2 – 21e6ė2 + 6e8ė2 + 8eė3 – 8e3ė3 + 7e5ė3 – 2e7ė3)[1 – (e – ė)2]1/ 2 + 
              + 2(e – ė)4(1 – e2) 7/ 2.  
 

            This definition enables us to rewrite the solution (79) in a more 
compact form:  
 

(83)       H4(e,ė) ≡ πD(e,ė)ė – 4(1 – e2) – 7/ 2[1 – (e – ė)2] – 1/ 2.  
           Because  
(84)       lim{π(1 – e2) – 7/ 2[1 – (e – ė)2] – 1/ 2} = π(1 – e2) –  4,  
              ė(u) → 0   
         

we, as in the previous consideration of H3(e,ė), temporally disregard the 
factor π(1 – e2) – 7/ 2[1 – (e – ė)2] – 1/ 2, and concentrate on the quotient 
D(e,ė)/ė4 under the limit transition ė(u) → 0. Obviously:  
 

(85)       D(e,0) = (– 2e4 + 6e6 – 6e8 + 2e10)(1 – e2) 1/ 2 + 2e4(1 – e2)7/ 2 =  
              = – 2e4(1 – 3e2 + 3e4 – e6)(1 – e2)1/ 2 + 2e4(1 – e2)7/ 2 =  
              = – 2e4(1 – e2)3(1 – e2)1/ 2 + 2e4(1 – e2)7/ 2,  
 

which is a premise to make use of the L’Hospital’s rule, in order to 
investigate if the expression (79) or, equivalently, (83) are well behaved, 
when ė(u) approaches zero. We shall not enter in details of the needed (to 
some extend) tedious algebraic and differential calculations, and only give 
here some of the final results. For example, it may be shown that:  
 

(86)       lim ∂D(e,ė)/∂ė = lim ∂2D(e,ė)/∂ė2 = lim ∂3D(e,ė)/∂ė3 = 0.   
               ė(u) → 0                   ė(u) → 0                    ė(u) → 0                      
        

 The above nullifications are essential conditions (among the others, 
of course!) to apply the L’Hospital’s rule several times by turns. Finally, 
taking the limit ė(u) → 0 after the fourth differentiation:   
 

(87)       lim ∂4D(e,ė)/∂ė4 = 6(8 + 24e2 + 3e4)(1 – e2) – 1/ 2,   
             ė(u) → 0       
                   
we obtain a non-zero result. In view of the fact that the fourth derivative 
∂4(ė4)/∂ė4 = 24 ≠ 0, and taking into account the temporally disregarded 
factor (84), we arrive to the following conclusion:  
 

(88)       limH4(e,ė) = lim{πD(e,ė)ė – 4(1 – e2) – 7/ 2[1 – (e – ė)2] – 1/ 2} =  
             ė(u) → 0       ė(u) → 0                     
            = (6π/24)(8 + 24e2 + 3e4)(1 – e2) – 7/ 2(1 – e2) – 1/ 2(1 – e2) – 1/ 2 =   
              = (π/4)( 8 + 24e2 + 3e4)(1 – e2) – 9/ 2.  
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 A direct computation, based on the substitution ė(u) = 0 into the 
definition (79), leads to an equivalent to (88) final expression. That is to say, 
the evaluation procedure does not include in the intermediate calculations 
terms, containing the factor ė(u) into their denominators. And, consequently, 
they do not suffer from a “peculiar” behaviour, when ė(u) approaches zero. 
The integral H4(e,ė) becomes for ė(u) = 0 an already known function of 
e(u):  
                                             2 π                             
(89)       H4(e,0) ≡ ∫(1 + ecosφ) – 5 dφ ≡ A5(e,0) = (π/4)( 8 + 24e2 + 3e4)(1 – e2) – 9/ 2,  
                                              0                            
where we have put into use the estimation (24). Like the previous 
considered cases, the conclusion which follows, implies that under the limit 
transition ė(u) → 0, the solution (79) preserves its meaning and passes 
through the “divergence” point ė(u) = 0 in a continuous manner. Evidently, 
when both e(u) and ė(u) vanish simultaneously, the already derived 
expressions give the “right” answer H4(0,0) = 2π, in spite of the order by 
which e(u) and ė(u) attain their zero values.  
 
 3. Conclusions  
   

            The basic goal, which we intend to do in this paper, is to compute, 
by an analytical way, expressions for certain type integrals. They will be 
used in the forthcoming investigations of the dynamical equation of the 
elliptical accretion discs ([1], [2]). More precisely speaking, the integrands 
of these functions of the eccentricity e(u) of the particle orbits, and their 
derivatives ė(u) ≡ ∂e(u)/∂u. They contain into their denominators factors (or 
products of them) of the type (1 + ecosφ)i or [1 + (e – ė)cosφ]j. The powers i 
and j may take integer values 1, 2, 3, 4, 5 and so on. We stress that the 
considered integrals do not include into their nominators  factors other than 
unity. Therefore, the integers i and j are always positive. Of course, we have 
limited us to a minimum set of numbers of these powers - such, which will 
be enough, in view of the future applications of the analytical solutions for 
these integrals. Although there is not (at least an obvious) doubt, that the 
used in the present paper (essentially recurrent) approach for analytical 
evaluations of the integrals Ai(e,ė), Ji(e,ė) and Hi(e,ė), (i = 1, 2, 3,…), may 
be extended for arbitrary integers i, we do not solve this general problem. 
That is to say, we do not try to obtain any common expressions for each of 
these functions of e(u) and ė(u), valid for arbitrary powers i = 1, 2, 3,…. 
This would be an extended mathematical task, which would be beyond the 
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scope of our efforts to analyze a concrete physical problem – the dynamical 
equation of the stationary elliptical accretion discs.  
           An essential peculiarity, which occurs for almost all the calculations 
of the above mentioned integrals, is that in the intermediate results appear 
terms, which may be divergent for some values of e(u), ė(u) or the 
difference e(u) – ė(u). In the final expressions, representing the final 
solutions of the integrals, these peculiarities may present or not present. 
These indeterminacies can be overcome by means of direct substitutions of 
the above noted “peculiar” meanings into the initial definitions of Ai(e,ė), 
Ji(e,ė) and Hi(e,ė), (i = 1, 2, 3,…), and then performing the integration. As a 
rule, this procedure is more easily fulfilled, and, fortunately, does not 
involve, at any stage of the calculations, the considered type of peculiarity. 
As it becomes evident, after the comparison of the two solutions, we strike 
with the following two situations: 
       (i) The final result for the expression, obtained through the “peculiar” 
intermediate terms, does not involve similar “peculiar” terms. Consequently, 
it is “regular” with respect to the substitution into it of the “singular” e(u) 
and ė(u). It is remarkable that the two ways (with singular intermediate 
terms and direct computation, without passing through such singular terms) 
give identical expressions. This is, of course, a favorable property, because 
there is not a necessity to point out the method, by which the considered 
formula is obtained.   
       (ii) The final result for the expression, obtained through the “peculiar” 
intermediate terms, retains its indeterminacy for the considered (caused by 
the divergent intermediate terms), “peculiar” values of e(u) or/and ė(u). 
Then, it turns out that it is possible, by the use of the L’Hospital’s rule, to 
reveal these indeterminacies of the type 0/0. Again, it is worthy to note that 
the evaluated in this way (by means of the limit transitions e(u) → 0, or/and 
ė(u) → 0) expressions coincide with those, computed through the direct 
substitution of the “problem” values of e(u) and ė(u) into the integrals, 
which we want to evaluate analytically. Such a continuous transition enables 
us to use into the applications the derived formulas, without to specify the 
path by which they are established. And also not to worry whether the 
applications of the above computed analytical expressions for the integrals 
Ai(e,ė), (i = 1, …, 5), Jk(e,ė) and Hk(e,ė), (k = 1, …, 4) do introduce any 
type their own divergence into the evaluated (more complex) composite 
expressions, of which they are parts.  
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АНАЛИТИЧНО ПРЕСМЯТАНЕ НА ДВА ИНТЕГРАЛА, 
ВЪЗНИКВАЩИ В ТЕОРИЯТА НА ЕЛИПТИЧНИТЕ 

АКРЕЦИОННИ ДИСКОВЕ. I. РЕШАВАНЕ НА 
СПОМАГАТЕЛНИТЕ ИНТЕГРАЛИ, ПОЯВЯВАЩИ СЕ 

ПРИ ТЯХНОТО ИЗЧИСЛЯВАНЕ 
       

Д. Димитров 
 

Резюме 
 Настоящата работа е част от едно обширно аналитично 
изследване на динамичното уравнение, определящо пространствената 
структура на стационарните елиптични акреционни дискове, съгласно 
модела на Любарски и др. [1]. При математическото описание на 
задачата са използвани като параметри ексценрицитета e(u) на 
орбитите на частиците и неговата производна  ė(u) ≡  de(u)/du, където 
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u ≡ ln(p), p е фокалният параметър на разглежданата орбита. В течение 
на процеса на опростяване на това уравнение, възниква 
необходимостта от  
                                                                                                                                                                                                                2 π                   

аналитично оценяване на интеграли от следните типове: Ai(e,ė) = ∫(1 +  
                                                                                                                 0                                                     

+ ecosφ) – i  dφ,  
                                                                   

 
2 π

                                                                                                                                        

(i = 1, …, 5), Jk(e,ė) = ∫(1 + ecosφ) – 1 [1 + (e – ė)cosφ] – k dφ и Hk(e,ė) =  
      2 π      

                                                   0                           

= ∫(1 + ecosφ) – k [1 + (e – ė)cosφ] – 1 dφ, (k = 1, …, 4). В тези формули φ е  
   0              
азимуталният ъгъл, върху който е извършено усредняването. Подходът 
при решаването на задачата е, фактически, рекурсивен. Най-напред ние 
оценяваме интегралите за най-малките стойности на i и k (т.e., i и k 
равни на единица). След това ние преминаваме към следващите 
стъпки, постепенно увеличавайки целочислените степени i или k, 
докато се достигнат указаните стойности 5 или 4,  съответно. 
Специално внимание е посветено на тези значеия на e(u) и ė(u) (и 
тяхната разлика e(u) – ė(u)), които евентуално могат да причинят 
разходимости в промеждутъчните или крайните изрази. Показано е, 
въпреки възникването на такива затруднения, че те могат да бъдат 
преодоляни посредством прякото заместване на “особените” стойности 
на e(u) и/или ė(u) в интегралите, като чак след това се извършват 
изчисленията. Даже ако в знаменателите на крайните резутати се 
появяват множители равни на нула (в следствие на анулиранията на 
e(u), ė(u) или e(u) – ė(u)), изразите не са разходящи, както ние сме 
доказали, използвайки правилото на Льопитал за разрешаване на 
неопределености от вида 0/0. Всички аналитични оценки на 
горенаписаните интеграли са извършени при ограниченията |e(u) < 1|, 
|ė(u) < 1| и |e(u) – ė(u)| < 1. Те са наложени поради физически 
съображения, с оглед на прилагането на тези решения във възприетата 
теория на елиптичните акреционни дискове.    
 


